

Unified Verification Framework Automation and

Test Standardization with UVM

Bin Liu, Libo Tian, Yu Guo, Yan Wu, Yongqi Sang

Baseband SoC Development Group

Intel Inc.

Xi’an, Shaanxi, China

www.intel.com

ABSTRACT

As the SoC design becomes more complex and larger, the verification effort has been mainly affected by
several factors. Those factors include the verification completion standard, verifiers' experience and
verification flow harmonization. If the verification strategy took more dependency on verifiers'
experience, the company would call for more training and professional working way. However, in most
of cases, a large SoC verification team is composed of different level of skilled engineers. Comparing
spending more into training, directing new hands to a unified verification methodology would help
building general verification mindset. Several years past, now the Universal Verification Methodology
(UVM) has been the main stream verification methodology. The verifiers mastered standardized means
to build test framework, but it could not well satisfy project schedule. This paper introduced a test
framework automation tool, which is based on UVM and Verification IP (VIP) and to serve higher level
environment automation. After the mechanism is given, the paper gave the project application case and
the benefits from this tool.

http://www.intel.com/

SNUG 2017

Page 2 Unified Verification Framework Automation and
Test Standardization with UVM

Table of Contents

1. Introduction ... 3

2. Background .. 3

3. Unified Verification Framework Automation .. 4

3.1 uTB Architecture ... 4

3.2 Pangu Script .. 7

3.3 Conformity of Pangu and uTB .. 9

4. Test Standardization ... 10

5. Centralized Function Coverage Management ... 11

6. Case Application .. 13

7. Conclusions ... 15

8. Acknowledgment .. 15

9. References ... 15

Table of Figures

Figure 1 Specific uTB framework ... 5

Figure 2 Unified command conversion layer ... 7

Figure 3 uTB automation flow ... 8

Figure 4 Pangu software architect and data flow .. 9

Figure 5 Coupling of Pangu and uTB ... 10

Figure 6 Centralized function coverage management ... 12

Figure 7 LPDDR4 controller uTB environment... 13

Table of Tables

Table 1 Unified command set ... 11

Table 2 Example code of a standard test ... 14

SNUG 2017

Page 3 Unified Verification Framework Automation and
Test Standardization with UVM

1. Introduction
It is helpful with a unified language and methodology to be applied in verification, and verifiers are
no more worried about which methodology to choose and the best suitable simulator. In fact, the
methodology reconciliation took over a decade, and now the verifiers as beneficiary could focus
more on the design verification itself instead of methodology choices. From the methodology
evolution progress, it inspired the verification industry should not only unify the methodology but
also supply flexible test framework to deal with kinds of design.

Yet the different designs made verifiers to build up design specific verification environment. It is
good to see most of verifiers apply the UVM for a 'house', but it is still unsatisfied every verifier has
to be firstly a construction worker, and then secondly to be its owner of the house. With different
experience, it would take different time and efforts for the verifiers to build a house. The test
framework obviously becomes a conflict factor with the project schedule. The project manager will
well understand the design complexity and estimate the verification effort regarding the design
complexity, but it is hard for the manager to consider the time to build a verification environment. If
it could be, the manager is willing to see the environment construction time to be shortened as
much as possible.

Simultaneously, the block level test case reusability and readability are much worse than the chip
level. The bad reuse quality made trouble for maintenance. Looking into the various block level
verification environment, it is reasonable to understand why the poor quality is born. The causes
lay on:
 Different verification environment architecture
 Different UVM application habits
 Different sequences with different VIPs
 Different compilation and simulation script

It is desirable to see verifiers could build unified style of 'houses', but it could not prevent verifiers
from making different appearance and interior for the houses. Then for design A's verifier and
design B's verifier, it is not practical to exchange the two verifiers to maintain the other one's
verification environment. With different application manners, it will introduce much effort to
understand the verification environment's structure and test cases.

Even if test cases are created, it could not be equalized the verification objective could be fully
covered. Without a unified test framework, the verification management missed guidelines to be
embedded into the environment. Then verifiers would contribute different function coverage for
design verification. Therefore, the verification completion will be questionnaire and challenged.

2. Background
Before giving the solution proposal, it is meaningful to look back the general verification MTB
(Module Test Bench) establishment flow. When a new design is assigned to the verifier, he would
read the design specification and master the functions, design boundary and register description.
Then it is time to collect the VIP personally to prepare for the verification environment. Before the
test framework could be operated, it requires the effort to learn how to integrate the VIPs and how
to generate the register model. Moreover, it asks more debug time for the UVM environment top-
down creation and connection. Once those VIP elements are successfully planted, the verifier would
write high level sequences and coordinate the VIP agents. Besides the verification environment
buildup, the later phase regression run needs customized script for server job submission and
coverage collection. After the MTB is grown in a previous project, it would be maintained and

SNUG 2017

Page 4 Unified Verification Framework Automation and
Test Standardization with UVM

adapted to a new project. For the new verifier, he should first get understood the environment and
the test scenarios.

This is the general flow to build a MTB from the very beginning. Through the long and scattered
process, there is quite effort taken to ensure the testbench basics:
 The verifier has to collect the available VIP himself.
 The learning curve to master the new VIPs before integration.
 There is no consistent register model creation and integration flow.
 Inestimable debug time for testbench integration.
 Non-uniform script for testbench compilation, simulation and regression.
 Varied MTB and test sequences increased the maintenance costs explicitly.

To extract the difficulties from decreasing the main efforts above, it would be summarized as
below:

1. Verification environment construction time
2. Test framework and test case reuse
3. Function coverage completion

Respectively correspond the conflicts factors given in the paper abstract: verifier's experience,
verification flow harmonization and verification completion standard. The UVM, as a singleton
methodology, has not fully satisfy the verification teamwork. Along with the project execution, the
overall verification standard and framework generalization were urgently needed to be unified.
Before the verification industry push forwards the higher level test standard, the companies have
waked up to the requirement, and contributed their own solutions.

This paper gives a solution 'Pangu' to ease the conflicts listed with the project, and the objective is
to serve the verifier convenience for test framework fast build up, test case unification and
centralized the function coverage management.

3. Unified Verification Framework Automation
To give a complete solution, Pangu as the internal testbench automation tool is developed. Before
giving more details, those key words are put here for understanding the core of Pangu:
 Pangu: the testbench automation tool.
 uTB (unified testbench): the generated testbench by Pangu automation.
 uIF (unified interface): the interface which is to bridge unified command to specific bus VIP

agent's sequence or item.
 uTB command: the unified command set which is used to create the test scenario.
 uNet: the unified network which transfers the uTB commands based on AHB protocol.

It would help understanding the mechanism while splitting the generated uTB framework and the
automation script. Because the tool development process also follows the split strategy and is
processed independently. First, it is necessary to prove the feasibility of uTB framework. Then the
automation script would refer to the original model as a prototype. Therefore, this paper would
first introduce the uTB architecture and then explain the Pangu script organization.

3.1 uTB Architecture
Imagine it is assigned a new module, before automating the uTB, those information should be
extracted from the design specification:

SNUG 2017

Page 5 Unified Verification Framework Automation and
Test Standardization with UVM

 Standard bus type and number
 Clock and reset number and synchronization relationship
 Non-standard interface and number
 Register description file

Those extracted parameters would be fed to Pangu and then a specific uTB will be generated. The
general framework could be drawn as the Figure 1 below:

Figure 1 Specific uTB framework

Combined with previous uTB keyword definitions, it could be found several core elements
composing the uTB:
 uTB master
 RGM (Register Model)
 uNet (AHB network)
 uTB slave
 Specific VIP master agent

SNUG 2017

Page 6 Unified Verification Framework Automation and
Test Standardization with UVM

The critical point of uTB architect is the unified command trigger and layer conversion. The uTB
master could be taken as the processor or a general master which sends out the unified command.
The command is composed of target slave address, command type, and the arguments. The
command would be converted via the uNet and reach uTB slave. The uTB slave would further parse
the command and finally translate it to the specific VIP master agent sequence or item. This is a full
path from the uTB master to the VIP master agent, and similarly, the response data path would be
translated along the inverted layer path. This solution realizes the feasibility of unified command
set, and data consistency.

From the Figure 1, the DUT (Design under Test) is extracted those interface types:
 AHB slave interface
 AXI slave interface
 OCP slave interface
 Clock and reset
 Miscellaneous interface

To mimic the parallel slave interface (AXI and OCP), it is requested to create two uTB masters. With
the register description file based on XML (Extensible Markup Language), the RGM could be
created. If it is to further explore the uTB unified command conversion layers, it would be explained
as the Figure 2.

When a command is given to the uTB master, it would issue a TLM2 socket item to the uNET AHB
master. The uNet is configured based on the Synopsys AHB bus system, and available to receive and
to response by TLM2 socket item. The transaction between uTB master and uNet AHB master is
done via TLM2 instead of AHB hardware pins. Then the uNet master would translate the TLM2
socket to AHB hardware bus pins inside the visualized AHB network, and hardware bus event
would be transferred to the AHB slave and then translated to TLM2 socket item. The TLM2 socket
items stored in AHB slave agent would be fetched by the uTB slave. uTB slave would combine the
sequential TLM2 socket items and reformatted them as a recognized uTB command object. The uTB
command object which should include the command type and arguments. The arguments could
consist address, data and other optional arguments. The command object will be parsed and
mapped to the specific VIP master agent. Finally, the VIP master agent would stimulate the DUT via
the interface pins.

To summarize the streamline command parse and composition, it could be divided into four layer
conversion as Figure 2:
 Layer1: TLM2 socket item to AHB pin
 Layer2: AHB pin to unified command object
 Layer3: Unified command object to specific VIP sequence or item
 Layer4: VIP sequence or item to bus interface pin

From the development view, the layer1 and layer2 compose of the core uTB command transition
and are developed centrally. The layer3 is customized according to different VIP since it is a
mapping phase from the uTB command to the VIP sequence or item. The layer4 is already
implemented by the VIP driver itself. From the VIP adaption to the uTB framework concern, only
layer3 needs to be implemented. The layer3 is mainly about the development of uTB command
parse and mapping to the VIP sequence or item.

Based on the uNet, it is available to instantiate multiple uTB masters, and supported to trigger
different data access request from those masters. This way makes it applicable to trigger

SNUG 2017

Page 7 Unified Verification Framework Automation and
Test Standardization with UVM

interleaved data transactions to the same slave agent or parallel data transactions to the different
slaves.

Figure 2 Unified command conversion layer

3.2 Pangu Script
As the uTB is proven its architect unity, Pangu is developed for the uTB automation. The
automation flow could be described as Figure 3:

1. The uTB common package and available VIPs are the basic components.
2. The HAS (Hardware Architecture Specification) would be extracted for design parameters as

customized input to Pangu.
3. With the elements above, Pangu would generate the specific uTB.

SNUG 2017

Page 8 Unified Verification Framework Automation and
Test Standardization with UVM

Figure 3 uTB automation flow

As an automation tool, the core development technics is based on Python and Mako [1]. To simplify
the software relationship and development strategy, the Pangu software architect could be
described as Figure 4. From the design input to the generated uTB, the data flow could be divided as
three steps:
 Step1: Extract the design input from the GUI (Graphic User Input) or Excel form, and arrange

them into the data pool class.
 Step2: The template types are divided as four kinds: configuration, environment, register and

test. Each template type is together with a corresponding data class which excavates useful
data from the central data pool. With the extracted data, each template could automate the
related files.

 Step3: The main generator is a coordinator which combines all of template engines, and
finally organize all of generated files as an integral uTB suite.

With the design parameters, Python script and Mako templates, the generated uTB suite would
cover those content:
 All necessary VIP element link
 UVM register model
 uTB UVM top environment with all of element instances and the register model
 Configuration files which could be customized for each VIP type or instance
 Basic test
 Automated connected hardware testbench which instantiates the DUT and invokes the UVM

test.
 Makefile script

SNUG 2017

Page 9 Unified Verification Framework Automation and
Test Standardization with UVM

Figure 4 Pangu software architect and data flow

3.3 Conformity of Pangu and uTB
In the practical uTB architect and Pangu tool development process, there exists interdependent
relationship between them. First of all, it is only possible to bear the basic uTB architect and prove
its feasibility, Pangu would then have chance to trigger the script development. After Pangu reaches
the initial software release standard, it is time to apply Pangu to generate more specific uTBs and
get the actual feedback. The feedback would in turn help the tool to be further improved.

Therefore, it is a coupling and spiral development relationship between Pangu and uTB. Figure 5
gives an overall uTB automation layer relationship:
 In the bottom layer, the unified command set and uNet communication network compose the

test standardization basics. Mako template and HAS parameters would generate the uTB
environment.

 In the upper layer, commercial VIP, in-house VIP and user defined VIP all ensure the bottom
drive units.

 With the generated uTB and VIPs, the centralized configuration and unified test cases
contribute the maintainable tests.

 Based on those elements above, uTB could be created by Pangu.

SNUG 2017

Page 10 Unified Verification Framework Automation and
Test Standardization with UVM

Figure 5 Coupling of Pangu and uTB

4. Test Standardization
As it is explained in the background description, uTB is not only about the parameterized
architecture, but also about the test standardization. The test unity is realized based on the uNet
communication network and the unified command set. The uNet communication network is an AHB
bus system which transfers the composed sequential packet data number, and the unified
command set makes the uTB test scenario easily understandable.

Table 1 gives the unified command set. Those command set could be divided as three types:
 Data access commands
 Register access commands
 Other commands

It is feasible for the uTB master to send those commands to different uTB slaves. Besides register
and data access, it is also available to configure the clock frequency or pin value. Behind those
command set, uTB master would pack different commands referring to the standard command
packet format and transfer it via TLM2 socket to the AHB network master agent. Then the following
layer conversion is described as Figure 2.

With the generalized commands, the uTB tests ask for less effort to create, maintain and read. This
also make it possible for little UVM experienced engineer to create test scenario, which is quite like
the C test. Simultaneously, it is precisely because of the command consistency, the UVM based
command set is also adapted to C layer. This makes convenience to write UVM test or C test with
the same command set, and the only difference is about the test language.

SNUG 2017

Page 11 Unified Verification Framework Automation and
Test Standardization with UVM

Table 1 Unified command set

5. Centralized Function Coverage Management
Since the uTB framework is highly structured, and this provides possibility to manage the function
coverage centrally. In general, the function coverage would be divided as those types below:
 Register coverage
 Bus protocol coverage
 I/O toggle coverage
 Design internal coverage

For the register coverage, bus protocol coverage and I/O toggle coverage, they could be monitored
and achieved from the VIP monitor instantiated in uTB, and for the design internal coverage, and it
is the verifier responsibility to refine the coverage item and to map them with the verification
objective. Therefore, the centralized function coverage management diagram could be described as
the Figure 6. The centralized top coverage manager would collect the global coverage dynamically
with the running case.

Here the coverage collection could be done during the case run or merged with multiple regression
cases offline. Therefore, the top coverage monitor would reflect two type statistics: current
coverage and incremental coverage. The current coverage would specify the coverage contribution
by the running case, and the incremental coverage would indicate the overall coverage by the
regression run. Either of the coverage would be helpful to direct the random stimulus generation

SNUG 2017

Page 12 Unified Verification Framework Automation and
Test Standardization with UVM

and the dynamic constraint set. Thus it is a feedback loop from the coverage monitor to the top
coverage manager, and then to the uTB master random stimulus generation.

The stimulus biasing strategy would be applied in the post verification phase when the design reach
to the stability region. Before triggering the stimulus biasing method, the verifier would have
already ran enough random case but there is still some function coverage holes exposed. The left
20% function coverage hole is hard to be hit by the random case due to the much loose constraint
of stimulus. For the left 20% coverage, some verifiers would choose to analyze the possibility of
coverage hit, and create direct case manually, which is often time consuming. Moreover, some deep
design internal coverage cannot be estimated the precise external stimulus, and this means the
ordinary means is out of order.

Figure 6 Centralized function coverage management

For this case, it is time to give further constraint and orient the possible stimulus for the coverage
hole. The feedback loop from the top coverage manager to the uTB master is also called function
coverage driven loop. The top coverage manager would give helpful combined sequence or over
constraint items based on those data:
 Historical coverage and related element sequences
 All of available sequences or items

SNUG 2017

Page 13 Unified Verification Framework Automation and
Test Standardization with UVM

With the coverage and sequence/item database, the coverage manager would calculate the possible
sequence combination and give a more clear direction. In this way, the function coverage and test
sequence promote each other.

6. Case Application
Before the completion of this paper, Pangu has been applied in the project to support uTB creation
for several design modules. A case application would be more conducive to how to use this tool. The
Figure 7 gives an LPDDR4 controller device verification environment. In the environment, those
element compose together for the uTB:
 LPDDR4 controller instantiated as DUT.
 LPDDR4 PHY and Denali memory model are connected with LPDDR4 controller as data

transition path.
 One uTB master, uNet, one AXI uTB slave and one AHB uTB slave are automated to play the

external master role.
 Checker and DFI4.0 monitor are manually created for data check.

Figure 7 LPDDR4 controller uTB environment

The interesting point lays on how to create the uTB by Pangu. The uTB automation steps follow this
way:

1. Read the LPDDR4 controller design specification and extract the design parameters.
2. Get the LPDDR4 controller register files.
3. uTB would be automated by the design parameters, register file and Pangu.
4. LPDDR4 PHY and Denali memory model would be connected inside uTB to complete the data

path.
5. The generated Makefile could be used to compile the DUT and uTB.
6. The generated basic test case could be ran first as use case reference.

SNUG 2017

Page 14 Unified Verification Framework Automation and
Test Standardization with UVM

Once the uTB is created, the verifier could directly write test sequence by the unified command
with little environment debug effort. An example test code is given in Table 2:

Table 2 Example code of a standard test

class lpddr4_basic_test extends lpddr4_base_test;

 …

 task run_phase(uvm_phase phase);

 super.run_phase(phase);

 phase.raise_objection(this);

// clock frequency set as 100MHz

 env.utb_master1.command_put(CLK_SET, ‘h1000_F000, {100});

// reset assertion after 100 ns

 env.utb_master1.command_put(RESET, 'h1000_F000, {100});

// write register by name

 env.utb_master1.write_reg_by_name("reg_dataport", 'h9ABCDEF0);

// read register

 env.utb_master1.read_reg(env.rgm.cp_host_sdmmc.reg_dataport,

'h9ABCDEF0);

// AHB for register address

 env.utb_master1.wburst('h2000_F000, {'h11223344, 'h55667788,

'h99AABBCC});

 env.utb_master1.rburst('h2000_F000, 4, data);

// AXI for data address

 env.utb_master1.wburst('h4000_F000, {'h11223344, 'h55667788,

'h99AABBCC});

 env.utb_master1.rburst('h4000_F000, 4, data);

// IOC

 env.utb_master1.command_put(IOC_SET, 'h5000_F000, {1, 1, VAL_1});

 env.utb_master1.command_put(IOC_CHECK, 'h5000_F000, {3, 2, VAL_1,

VAL_1});

 phase.drop_objection(this);

 endtask: run_phase

endclass: lpddr4_basic_test

In the run_phase() task, the first two commands are to set clock frequency and to trigger reset. This
is implemented by the command command_put() with correct arguments. The next two commands
are to write and read register with commands write_reg_by_name() and read_reg(). Then there are
four commands for data write and read. It is noticeable the first pair of write and read commands
are to access the slave address 0x2000F000, and the second pair of write and read commands are
to access the slave address 0x4000_F000. The two slave addresses are mapped to different slaves.
One slave is AHB slave, and the other one is AXI slave. For the uTB master command, it is no
different for the command sent to different bus slaves, and this way gives a direct and simple way
for stimulus generation. Finally, the last two commands are to configure and check I/O pins of DUT.

SNUG 2017

Page 15 Unified Verification Framework Automation and
Test Standardization with UVM

From the test code, it could be conceivable that this method is easy to learn and understand. Just
because of the command standardization, the uTB has been also extended with adaptive C language
interface. Then for verifiers, both of UVM test or C test are supported and easy to maintain.

7. Conclusions
It is easy to manage and maintain the SoC verification environment because most of SoC level
verifiers are testbench users instead of architects. However, this is not true for MTB build up and
most of verifiers need to build MTB themselves and write tests. Different experience and
understanding of verification make the MTB difference and test manner diversity. As it is pointed
out, if MTB build and debug time could be shorten, then the saved time would definitely help the
design stability and project schedule. Pangu was initiated based on the MTB automation request,
and the purpose is also to deliver a unified testbench.

The unified verification framework is not only the basis of testbench automation, but also the basic
of test standardization. To serve the command unity, it is necessary to adapt kinds of VIP to the
uTB. If the uTB slave bridge has not been developed, the verifier would implement the specific slave
bridge himself. At the same time, it would be also available to connect all of sequencers inside the
VIP agents and write legacy UVM virtual sequences for more flexible control. This way also
complement the immobilization of uTB unified command set.

Pangu supplies an integral solution for testbench automation and test unity, and the standard test
framework further makes it possible to generalize the module level verification process, and also
the reuse of environment and test from module level to chip level.

8. Acknowledgment
In the development process, uTB framework validation is concurrently implemented with Pangu
tool. We appreciate Haibo Shao for the uTB prototype initiative, and Yan Wu, Libo Tian, Yu Guo and
Yongqi Sang for the uTB elements accomplishment. For the Pangu tool development, we would
thank to Weikai Wang and Xuan Shi for the Python/Mako template execution, and Wenqiang Ren
for the register model generation flow definition. Besides the Pangu release, it would be also
grateful for those first batch of Pangu users, and they are Rongli Jin, Yingran Huang and Zhao Liu.

9. References
[1] Mako template language website http://www.makotemplates.org/

	1. Introduction
	2. Background
	3. Unified Verification Framework Automation
	3.1 uTB Architecture
	3.2 Pangu Script
	3.3 Conformity of Pangu and uTB

	4. Test Standardization
	5. Centralized Function Coverage Management
	6. Case Application
	7. Conclusions
	8. Acknowledgment
	9. References

