
 

 

 

 

 

A Synthesized and Consistent Clock Management 

Solution Covering Full Pre-silicon Steps 

 

 

 

Bin Liu, Shunjun Lou, Li Li 

 

 
Modem Hardware Group  

Intel Inc. 

Xi’an, Shaanxi, China 

 

www.intel.com  

 

ABSTRACT 

Along with the size and complexity are booming, the clock integration arose as a challenging step. 
Benefited by modern clock optimization technics, it also introduced new complexity to the clock system. 
In the legacy approach, clock integration would be manually taken by multiple departments. 
Meanwhile, different focus points of clock possibly leads to error modification of clock data, and the 
irregular clock management flow would easily result in error-prone clock data update and further 
affected other related steps. Regarding the characteristic of clock management, the paper initiated a 
solution named iClock which synthesized the common participatory from multiple departments, and 
managed to maintain a consistent clock database. Besides the concept, a practical example would be 
applied to illustrate the advantage of iClock coordinating and covering full pre-silicon steps. By iClock, 
each objective department would easily extract the required data from iClock, and the data consistency 
also got ensured for error-free use. The procedure of Spyglass and Design Compiler has been offered 
benefits by this solution. The initiative of iClock would be referred to inspire more adaptive and user 
specific clock management solutions.  

http://www.intel.com/


SNUG 2018 

 

Page 2 A Synthesized and Consistent Clock Management Solution 
Covering Full Pre-silicon Steps 

 

 

Table of Contents 

1. Introduction ........................................................................................................................................................................... 4 

2. Background ............................................................................................................................................................................ 5 

3. Clock Table and Consistent Database .......................................................................................................................... 8 

3.1 Clock Table Merge ................................................................................................................................................. 9 

3.2 Clock Table Analysis ............................................................................................................................................ 9 

3.3 Smart Clock Edition ............................................................................................................................................ 12 

3.4 Edition History Backtrace ................................................................................................................................ 12 

4. Clock Extraction for Different Procedure ............................................................................................................... 13 

4.1 Spyglass CDC Script for DE .............................................................................................................................. 14 

4.2 Frequency Requirements for VE ................................................................................................................... 14 

4.3 STA Script for BE ................................................................................................................................................. 15 

5. GUI Mode for Feature Enhancement ........................................................................................................................ 16 

5.1 Clock Tree Window ............................................................................................................................................ 16 

5.2 Clock Graph Window ......................................................................................................................................... 17 

5.3 Clock Search Window ........................................................................................................................................ 17 

6. Summary .............................................................................................................................................................................. 18 

7. Prospect ................................................................................................................................................................................ 19 

8. Acknowledgement ............................................................................................................................................................ 19 

9. References ........................................................................................................................................................................... 19 

 

Table of Figures 

Figure 1 Hierarchical clock structure .............................................................................................................................. 4 

Figure 2 Clock system integration full steps in pre-silicon .................................................................................... 5 

Figure 3 Clock info maintenance flow by iClock ......................................................................................................... 6 

Figure 4 Clock tables' merge to full chip clock table by iClock ............................................................................. 6 

Figure 5 iClock extracted Excel form ............................................................................................................................... 7 

Figure 6 Main window of iClock GUI ............................................................................................................................... 7 

Figure 7 Clock tree graph of iClock GUI .......................................................................................................................... 8 

Figure 8 Clock tree window of iClock GUI ..................................................................................................................... 8 

Figure 9 Clock consistence check .................................................................................................................................... 10 

Figure 10 Clock data edition menu ................................................................................................................................ 11 

Figure 11 Clock Edition Table .......................................................................................................................................... 11 



SNUG 2018 

 

Page 3 A Synthesized and Consistent Clock Management Solution 
Covering Full Pre-silicon Steps 

 

Figure 12 Different clock groups with easily recognized color .......................................................................... 12 

Figure 13 Clock Table Comparison ................................................................................................................................ 13 

Figure 14 iClock Overall Layout ...................................................................................................................................... 16 

Figure 15 Clock tree window usage ............................................................................................................................... 17 

Figure 16 Smart clock search ........................................................................................................................................... 18 

  



SNUG 2018 

 

Page 4 A Synthesized and Consistent Clock Management Solution 
Covering Full Pre-silicon Steps 

 

1. Introduction 
Modern clock system design concept has introduced series of power saving technics which also 
made the clock system more complex. As the Fig.1 shows, a typical structured clock system would 
involve PLLs (Phase-Locked Loop) to generate basic source clocks, MUXes (Multiplexer) to select 
which clock as the output, dividers to generate low frequency clocks, and clock gating cells to 
switch on or off the clocks. The introduction of those clock design elements made it difficult to 
define, implement and layout the clock system. 
 

268

211
Divider

OFF

Gate

CGU

clk_B

403

211

OFF

MUX_A 
Ctrl

MUX_B 
Ctrl

...

...
Divider

PLL_A
211MHz

PLL_B
268MHz

PLL_C
403MHz

PLL_A 
Ctrl

PLL_B 
Ctrl

PLL_C 
Ctrl

Div_A 
Ctrl

Divider

Div_B 
Ctrl

Gate

Gate

EN_A

EN_B

EN_C

clk_A

clk_C

Gate

EN_D

clk_D

Div_C 
Ctrl

 
Figure 1 Hierarchical clock structure 

In general, the clock information would be given concept definition from system engineer (SE), and 
the information involves the kernel clock data such as the clock tree and clock frequency. Such a form 
is usually edited manually and maintained in document, and Excel form is a popular way to consist 
the highly structured data. Then the core clock data form would be forward to the design engineer 
(DE) who would complement more clock information to specify constraints of those clocks. Here the 
clock DE plays as the close interface between SE, verification engineer (VE) and backend engineer 
(BE) because DE would pick up the core clock information from SE and make design clock form. It is 
risky for the clock information extraction from SE’s to DE’s. Regarding dozens of subsystems and 
hundreds of blocks integrated into the SoC, the clock design data would be distributed and 
maintained by each subsystem clock DE, which commonly follows the top level clock design 
requirement. Finally, those scattered clock data would be merged together to draw the overall system 
clock tree. However, it still faces the hazard when different experienced engineers would possibly 
failed to make qualified clock data. This will then further affect the quality of top level clock 
integration. Besides, the information mismatch between top level and subsystem level would result 
in the integration risk too. As described, the long and manually operation steps are frequently done 
by different engineers, and clock data consistency check is rarely introduced to guarantee the clock 
data integration success. 
 
The full pre-silicon steps of clock integration would also involve clock information extraction from 
the clock design database. Due to the lack of available clock information container, both SE and DE 
often edit clocks via the Excel but had to tolerate the edition inconvenience and take the clock 



SNUG 2018 

 

Page 5 A Synthesized and Consistent Clock Management Solution 
Covering Full Pre-silicon Steps 

 

integration risk. It is given by Fig.2 that VE, BE and DFT would extract necessary clock information 
from the database, and implemented the specific script to go through their own steps: 

 VE would extract clock relationship and names to prepare the clock domain definition script 
for Spyglass CDC process, and also to guide the testbench clock generator to produce the 
expected clock frequency. 

 BE would extract more clock information from the clock database manually and scripted for 
the backend tooling Design Compiler to do synthesis. 

 DFT engineers would also refer to the clock form, select specific function clock for test clock 
purpose, and also tell BE the extracted information for corresponding synthesis of DFT areas 
such as SCAN and BIST.  

 

clock system integration full steps in pre-silicon

SE Top DE

Subsyste DE

VE BE

DFT

 
Figure 2 Clock system integration full steps in pre-silicon 

Unfortunately, the data extraction steps are also manually operated by different engineers. The risk 
of data loss and data mismatch would critically affect the quality of verification and layout. Therefore 
from the clock system integration flow in Fig.2, it is obviously necessary to avoid manual operation, 
and to improve the clock data consistence check when the database is modified. The centralized clock 
info management has improved the data accuracy fed with Spyglass and Design Compiler, which 
would be taken as a customized internal flow binding closely with Synopsys toolings.  
 
In this paper, it would propose a synthesized and consistent clock management solution named 
iClock to realize the centralized clock storage, error-free clock integration, and quick clock 
information extraction.  iClock is developed based on Python[1], Tkinter[2], and Graphviz[3]. 

2. Background 

The crucial point to solve the clock data consistence is to figure out a customized solution, and such 
solution is not only the centralized clock data storage, but also to satisfy all kinds of clock data 
extraction request. This is the basic requirement for iClock and it is compatible with the old work 
mode by Excel, and also supports more flexible data edition and extraction.  
 
As Fig.3 shows, the original clock data base with limited info is delivered from SE, and he usually edits 
and stores the info by Excel. Afterwards, the excel would be extracted into a consistent database by 
iClock. This demands iClock to analyze the data format of SE’s delivered clock file named BlockClock. 
DE would directly edit the clock data via iClock or the extracted data Excel format. Both of work 
modes are supported. It often happens SE would modify the BlockClock database, and it is 
compulsory to compare the extracted iClock design database and the modified BlockClock database, 



SNUG 2018 

 

Page 6 A Synthesized and Consistent Clock Management Solution 
Covering Full Pre-silicon Steps 

 

which is supported by iClock. From iClock solution concept, its primary target is to ensure the clock 
data consistence between the SE’s and the DE’s.  

 
Figure 3 Clock info maintenance flow by iClock 

 
Once the clock data consistence from the origin got assured, top level clock DE would organize the 
clock data by iClock, and subsystem clock DEs would also build the low level clock tree. Once all of 
scattered clock info is constituted, iClock would merge the top clock table and other subsystem 
clock tables together, and produce a full chip clock table. The merge step is given by Fig.4, and it 
would be generally taken several times once any clock table is updated. 
 

top clock table

subsys clock 
table2

subsys clock
table1

subsys clock
table3

merged full chip 
clock table

 
Figure 4 Clock tables' merge to full chip clock table by iClock 

After that, any engineer no matter SE, DE, VE, BE or DFT would extract the consistent clock data by 
iClock. Another important contribution of iClock is that it serves as a centralized clock data pool and 
involves everything about clock.  



SNUG 2018 

 

Page 7 A Synthesized and Consistent Clock Management Solution 
Covering Full Pre-silicon Steps 

 

 
Figure 5 iClock extracted Excel form 

iClock users would view or edit the clock data in any of clock table (top clock table or subsystem clock 
table) by Excel editor shown in Fig.5 or by iClock GUI (Graphic User Interface) shown in Fig.6. 
Comparing with the Excel edition style, iClock GUI edition is more convenient with advantages below: 

 Reorganize disordered clocks by clock tree order with different color. 
 Automatic clock consistence check when importing or exporting clock Excel tables. 
 Summarizing the overall clock tree e.g. clock number, PLL number. 
 Graphical presentation of clock tree to master specific clock source and its children clocks 

shown in Fig.7. 
 Easy clock source and sequence trace. As Fig.8 shows, it would help tracing the whole clock 

source chain of a specific clock, and get its parent and children clocks. 
 Smarter search function to give required search pattern for any clock info column. 
 Detailed edition backtrace to help clock edition history for the non-text clock database. 
 Clock database comparison function to assist differentiate historical versioned clock tables. 
 Flexible clock data extraction to required script formats for VE, BE or DFT.  

 
Figure 6 Main window of iClock GUI 

Project Clock Name Clock Type Clock Frequency Clock Source Divider Ratio Waveform Layout Level Constraint Level

plla_clk P_CLK 208 1 (1, 2, 3) Chip PLL

gclk_dtcm_mux_uspc G_CLK 208 plla_clk 1 (1, 2, 3) Chip DTCM

gclk_mcgu_ahbp4top_o G_CLK 52 gclk_dtcm_mux_uspc 4 (1, 2, 9) Chip CGU

gclk_xbar_ahb5_slave_o G_CLK 104 gclk_dtcm_mux_uspc 2 (1, 2, 5) Chip L_CGU

pin_dbg_mclk_bus_i G_CLK 208 gclk_dtcm_mux_uspc 1 (1, 2, 3) DBG CGU

gclk_dbg_dap_p4_hclk_o G_CLK 104 pin_dbg_mclk_bus_i 2 (1, 2, 5) DBG CGU

gclk_dbg_debug_clk_ahb_slave_o G_CLK 52 pin_dbg_mclk_bus_i 4 (1, 2, 9) DBG CGU



SNUG 2018 

 

Page 8 A Synthesized and Consistent Clock Management Solution 
Covering Full Pre-silicon Steps 

 

 
Figure 7 Clock tree graph of iClock GUI 

 

 
Figure 8 Clock tree window of iClock GUI 

With an overview about the iClock’s rick features, it would give a panorama from basic concepts to 
the function details. The purpose is to help understanding why the in-house tooling is designed as 
such an architect, and how those functions are combined to contribute the full clock steps through 
pre-silicon phase. Paragraph 3. would explain the main body of iClock about the clock table, and also 
the elements which compose a consistent database. Paragraph 4. would give some demos to illustrate 
how to apply the clock table to extract differently required context in pre-silicon phase. Paragraph 5. 
would show the GUI mode of iClock, and give basic instructions for how to operate this tooling. 
Paragraph 6. and 7. would be final summary and prospect about iClock’s strength and features to be 
added in the short future. 

3. Clock Table and Consistent Database 

Before introduing the clock table, it is ncessary to repeat that the iClock table is primarily extracted 
from SE’s BlockClocks table which only involve quite limited information and just about the clock 
source, frequency request and relationship. However, there will be more clock related information 
to be apended to iClock table, which would inovle all needed clock data such as shown in iClock 



SNUG 2018 

 

Page 9 A Synthesized and Consistent Clock Management Solution 
Covering Full Pre-silicon Steps 

 

extracted Excel form Figure 5 but more. Regarding the paper length, it is given most commonly used 
clock information below with short descrption: 

 Name: clock name and should be unique across the overall clock table. 
 Type: clock type and indicate if it is a PLL root clock, a DTCM clock, a gated clock or a pin input 

clock. 
 Frequency: clock frequency. In some scenario, the frequency would be different according to 

different voltages. 
 Source: the clock source which generates the current clock. 
 Division: the division relationship with source clock e.g. if current clock A is 200Mhz, and its 

source clock B is 400MHz, then the division number of A is 2.  
 Waveform: it is a commonly required parameter for BE, which is used to specify the duty ratio 

for a clock e.g. if clock A waveform is (1 2 3), then it means the duration of high value ‘1’ and 
low value ‘0’ equals. 

 Layout: used to specify which layout block the current clock belongs to. In general, there 
would be some independent layout blocks inside a SoC. 

 Dtcm: indicate if it is given from a DTCM, and there are some other DTCM related parameters 
used to be composed together and explain the relationship between the clock and target 
DTCM. 

 Synchronicity: this will define the clock group, and iClock will generate the timing exception 
for different clock groups. All of clocks inside the same clock group will be deemed as 
synchorounous. 

 Scan clock mapping: normally, there will be several scan clocks in chip. Try to avoid 
unnecessary clock crossing check between different clocks from different DTCMs. The scan 
clock mapping should done in a smart way to save effort to analyze those unreal timing 
violations during scan mode. 

 Instance name: it is usually composed of a common defined block hierarchy macro with a 
specific clock path, which would point to the clock location. 

3.1 Clock Table Merge 

Besides those typical clock elements, there are still some elements about the specific usage. For an 
clear exaplaination, iClock introduction would be mainly around those elements given above. It 
would be also found that the listed clock elements are not given by SE, but defined by clock DE. Both 
of top level clock DE and subsystem clock DE would later merge their corresponding clock tables 
together. The merge effort would be implemented by iClock with the command below: 

 iclock -i a.csv -merge b.csv c.csv -o full.csv 

 
The example command would merge top level clock table a.csv with subsystem level clock tables 
b.csv and c.csv, and finally generate a synthesized overall clock table full.csv. This merge procedure 
is also demonstrated in Figure 4.  

3.2 Clock Table Analysis 

In general, for a single clock table (excel format) which fulfills the iClock format requirement, would 
be compatible with iClock edition mode, and also available to be edited in iClock. Once such a table is 
fed to the tooling, it would imply a data analysis procedure of source extraction and database 
generation. During the data source extraction, it will not only check the original data consistence, but 
also regulate the data into the iClock database. For the original data consistence, it will firstly give the 
overall clock data report which inovles: 



SNUG 2018 

 

Page 10 A Synthesized and Consistent Clock Management Solution 
Covering Full Pre-silicon Steps 

 

 Detailed clock summary 
 Any violated clock information 

 
For instance, iClock is supplied with a processor subsystem clock table, and then it would report the 
processor subsystem’s overall clock information as Figure 9. The reported messages include: 

 Sychronicity clock groups 
 Clock sources 
 Number of each clock types 
 Violation 

 
Figure 9 Clock consistence check 

The red color marked message is used to point out which clock data might be unreasonable or 
inconsistent with other clocks. Therefore, it is necessary to read the warnings carefully and edit the 
target clock until all of warnings are clean. The report is also helpful for a visitor and master the 
overall clock information of a subsystem. Then the user would save the clock table again to a CSV or 
a excel format. It means user would both edit the clock data by Excel editor or iClock, and the 
suggested way is to use the iClock since it supplies lots of convenient operations which are not given 
by Excel editor. While editing the clock data via iClock, it would apply several common operations by 
right-clicking the target clock, and there would be a menu popping up as Figure 10.  
 



SNUG 2018 

 

Page 11 A Synthesized and Consistent Clock Management Solution 
Covering Full Pre-silicon Steps 

 

 
Figure 10 Clock data edition menu 

When editing a clock item, a clock entry table would pop up as Figure 11. In the table, all of clock 
parameters would be modified, and user would submit it. The point to be noted that, there is also a 
clock consistence rule check while submitting the clock table, and there might be warning or violation 
messages given once the clock edition is not expected. The smart clock edition content would be 
found in 3.3  

 
Figure 11 Clock Edition Table 

As it shows, the user would easily add new, copy, clone, edit or delete a clock item, and also get clock 
information by the log window. Meanwhile, the user would get clock relationship from the clock tree 
window illustrated by Figure 8. 



SNUG 2018 

 

Page 12 A Synthesized and Consistent Clock Management Solution 
Covering Full Pre-silicon Steps 

 

3.3 Smart Clock Edition 

After the initial analysis and arrangement, all of clock information would be pushed into the 
formatted clock database. The database architect is not the core point in this paper, but it is valuable 
to know each clock is reordered with its parent clock and child clocks, which finally generate a tree 
data structure. Such a tree strucute would made clock edition easier and more efficient to draw the 
clock tree diagram in the clock tree window. 
 
Another advantage of iClock clock edition is each edition would follow several rule checks and auto 
adjustment such as: 

 Check if the edition is valid and follows the clock consistence rules. 
 If the clock edition is valid, iClock would help automating all of other possible affected clocks 

e.g. if source clock A is decreased from 400Mhz to 200Mhz, and then its child clocks clock B 
and C would be automated to be decreased from 200Mhz to 100Mhz.  

 If the edition, addition or deletion of clock affected the exisint clock tree structure e.g. change 
clock A’s source clock from clock B to clock C, then user would apply the clock list refresh to 
reorder the clock tree. 

 Once the clock tree is changed and user reorders it, iClock would refresh its internal clock 
structured database and rearrange the clock items. It is easy to identify the different clock 
groups and their contained clocks from the various color shown in Figure 12. 

 
Figure 12 Different clock groups with easily recognized color 

3.4 Edition History Backtrace  

It is commonly required to compare the clock table between adjacent versions. For excel format, it is 
too hard to do the comparison, and it is either not friendly to read the text difference with CSV format. 
The clock table edition comparison got satasified in iClock, and it is easy to do the clock edition 
history backtrace. It is illustrated in Figure 13, once the clock table example_subsystem.csv is 
compared with example_subsystem_ver2.csv by iClock, it would give categoried comparison 
messages: 

 The clock property differences. It shows there is 1 clock item property difference. 
 The clock objects removed. It shows there is 1 clock item removed. 
 The clock objects added. It shows no new clock item is added. 



SNUG 2018 

 

Page 13 A Synthesized and Consistent Clock Management Solution 
Covering Full Pre-silicon Steps 

 

With this feature, the clock edition history is easy to track, and even the clock table is managed more 
than one DE, each edition history would be available to understand instead of only relying on the 
versioned check-in comment. 

 
Figure 13 Clock Table Comparison 

4. Clock Extraction for Different Procedure 

The magic of iClock consistent database is that it would apply the centralized data to generate 



SNUG 2018 

 

Page 14 A Synthesized and Consistent Clock Management Solution 
Covering Full Pre-silicon Steps 

 

different output for kinds of procedure. There are several typical applications with the database in 
pre-silicon phase, and they involve: 

 Script for Spyglass CDC (Clock-crossing Domain Check) for DE 
 Clock frequency requirement for VE 
 Script for STA (Static Timing Analysis) for BE 

 
It would give examples how to use iClock to generate the listed outputs in the following sections. 
iClock supplies both batch mode and GUI mode for user to generate the scripts or header files, and 
this paper only illustrates how to use the batch mode to make those outputs. 

4.1 Spyglass CDC Script for DE 

Another advantage of iClock is that the tooling development considered the distributed requirements 
from different function groups, and it is proposed to only maintain the centralized database. In other 
words, once iClock offers easy-use APIs (Application Programming Interface) of consistent database, 
every user would write Python script to be embedded by iClock, and produce the expected script 
format. The Spyglass CDC script is developed by the DE group independently, and maintained by 
them too. Such cooperation working mode makes iClock to be extensively utilized by all of function 
groups in pre-silicon phase, and also releases the in-house tooling developer’s effort for requirement 
response. 
 
In iClock batch mode, user would type in such a command format, and a script for Spyglass CDC would 
be generated: 

 iclock  -i  a.csv   -cdc  -o  a.sgdc 

  
It is known by experienced CDC reviewer that the most important configuration file is the clock 
information. For instance, the synchronicity should be set correctly, otherwise, some inappropriate 
clock crossing domain design would escape from the Spyglass CDC check. It is given a short piece of 
statements from the generated CDC script below: 

 clock -domain SYNC_MUX_ARC -tag gclk_arc_clk -period 1.184 -edge 

{0 1} -name "${PHY_UPC_ARC}inst_arc.clk"        

 clock -domain SYNC_MUX_ARC -tag llm_bank1_gclk -period 4.735 -

edge {0 1} -name "${PHY_UPC_ARC}inst_arc.ihs_cluster_top.clk_o" 

 
The CDC script automation further decreases the possibility of manual operation, and ensures the 
data extraction from the iClock centralized database. Comparing with manual interpretation from the 
design file or clock excel table previously, this process significantly reduced the manual operation 
risk, and makes Spyglass figuring out the asyncrhonous places as much as possible with a correct 
clock configuration. 

4.2 Frequency Requirements for VE  

Through the pre-silicon verification phase, clock frequency check is a basic requirement which would 
guarantee the testing system is under a correct clock configuration. Otherwise, some asynchronous 
places or timing violations would escape in RTL simulation or gate-level simulation. It is used to 
manually extract each module’s or subsystem’s clock info and also deployed in stimulus sequence 
and checker of environment. It is also the similar as 4.2 shows manual work would possibly introduce 
new unexpected fault such as inappropriate clock set or check. Therefore, the VE group also starts to 



SNUG 2018 

 

Page 15 A Synthesized and Consistent Clock Management Solution 
Covering Full Pre-silicon Steps 

 

work with iClock, and customizes the Python script which was friendly plugged into iClock database, 
and then generate clock set sequence and check statements with C or UVM. 
 
For instance, here it is given the clock check statements with C and UVM format. The two short pieces 
demonstrated the small effort dedicated by VE with iClock is much valuable, and the automation flow 
would generate all expected clock frequency check statements. User would apply any of them in their 
test case from the centralized clock check repository instead of preparing it themselves. Besides 
those convenient element methods and macros, VE would also customize other clock related 
methods with the iClock database. 

 #define CLK_ARC_A_FREQ_200_4_CHECK(IS_OK) 

bcompare_clock_frequency(“phy_upc_arc.inst_arc.clk_a”, 200400, 

IS_OK)  // clock frequency check macro with C 

 #define CLK_ARC_A_FREQ_GET(FREQ) 

bget_clock_frequency(“phy_upc_arc.inst_arc.clk_a”, FREQ)  

// clock frequency get macro with C 

 `define CLK_ARC_A_FREQ_200_4_CHECK(IS_OK) 

bcompare_clock_frequency(“phy_upc_arc.inst_arc.clk_a”, 200400, 

IS_OK)  // clock frequency check macro with UVM 

 `define CLK_ARC_A_FREQ_GET(FREQ) 

bget_clock_frequency(“phy_upc_arc.inst_arc.clk_a”, FREQ)  

// clock frequency get macro with UVM 

 

4.3 STA Script for BE 

Another important usage of iClock database is to serve the precise clock group set for BE’s Design 
Compiler STA  and other procedure preparation. As it is explained previously, the consistent iClock 
database involves all of needed information which is also a treasure for BE. It is noted the sciprt for 
backend procedure would be more complex and careful because every clock  should be not only 
precise for itself but also compatible with its parent clock and child clocks. Especially, if there is some 
missing asynchronous information which is not extracted between several clocks, it would be too 
much risky for those undetected area. The project practices also illustrated that, in the initial one or 
two projects, both of iClock database and BE extraction script needed to be reviewed repeatedly and 
the generated script has been also examined until the tape-out silicon proved the stability of the 
tooling and the flow. Here it is also given some short pieces of generated BE script for STA and other 
procedure: 
#================================================ 

# Variable Definition 

#================================================ 

set clk_src(dma_descr_gclk) "gclk_arc_clk" 

... 

#================================================ 

# Pin Definition 

#================================================ 

set pin_src(dma_descr_gclk) "${PHY_UPC_ARC}inst_arc/rccu1/clkout" 

... 

#================================================ 

# Clock Definition 

#================================================ 

create_gclk -name dma_descr_gclk -mclk $clk_src(dma_descr_gclk)                           



SNUG 2018 

 

Page 16 A Synthesized and Consistent Clock Management Solution 
Covering Full Pre-silicon Steps 

 

-edge { 1 2 5} -pin $pin_src(dma_descr_gclk) -clkgrp SYNC_MUX_ARC 

... 

Besides the code listed above, a legacy SoC concatenated clock database would generate over 
hundred pieced of script for backend procedure, but they are quite well organized and easy to 
maintain once the any clock item of the thousand clocks is updated. No more manual definition 
existed in BE clock exportation flow, and this no doubt increases the tape-off signoff confidence. 

5. GUI Mode for Feature Enhancement 

Besides the main window shown in Figure 6, there are also several utility window for specific usage. 
It was architected not only for clock DE but also for VE and BE. Thus, it is reasonable to supply several 
practical features to search or visualize one or several clocks. This paragraph would introduce other 
windows and their corresponding functions. The overall window layout is shown in Figure 14.  

 
Figure 14 iClock Overall Layout 

It is same with other commercial EDA toolings there is a menu bar, and also several embedded 
windows in iClock. Major functions inside the menu bar have been already introduced, and the 
following is to give an additional brief demonstration for other windows: 

 Clock tree window 
 Clock graph window 
 Clock search window 

5.1 Clock Tree Window 

It is commonly asked to trace the parent clock or several child clocks, which would help 
understanding the clock relationship. The user would right click any clock item and select “get tree 
view” or “get sequence view” as shown in Figure 10.  It is also available to right click the clock item 
in the clock tree window to get more clock information in the log window, get parent clock or child 
clocks, or generate a visualized clock graph to be introduced in 5.2 . 



SNUG 2018 

 

Page 17 A Synthesized and Consistent Clock Management Solution 
Covering Full Pre-silicon Steps 

 

 
Figure 15 Clock tree window usage 

5.2 Clock Graph Window 

While it is to trace a big clock group, the clock tree window is not the only way to understand the full 
picture. With the same clock database, iClock also implements another kind of window, clock graph 
window. In general, the graph window is not present in the GUI layout, but user would call it via main 
window or clock tree window while selecting an option “generate clock graph” with right clicking on 
a clock item. Figure 7 gives a brief clock structure which involves a root clock and several child clocks, 
and the clock graph mode is more appropriate to master the overall clock tree. 

5.3 Clock Search Window 

With extensive iClock application to all of function groups, the user experience demanded an 
independent window which would show the interesting clocks. Sometimes, the user would search a 
clock, a DTCM clock tree or overall clocks of a specific subsystem. The smart search feature is 
different with general text search because it supplies an enhanced regular pattern search mode and 
a different category match mode. For instance, as Figure 16 shows, user would type in interesting key 
word in the “name” entry or other entries, or directly select a clock type, a layout or a scope to filter 
the target clocks. 



SNUG 2018 

 

Page 18 A Synthesized and Consistent Clock Management Solution 
Covering Full Pre-silicon Steps 

 

 
Figure 16 Smart clock search 

Once the search result is shown in the clock search window, user would continue the same operation 
as it does in the main window. With such an additional clock info window, it serves a good clock data 
reference. 

6. Summary 

iClock is an in-house tooling initiated to solve the clock consistence through pre-silicon, and now it 
also started to serve post-silicon test and driver composition. The author and his involved big SoC 
team used to taste the pain for the fussy clock storage and extraction procedure, and figured out the 
consistent clock database to finally offer the integral solution. The centralized clock data 
maintenance and smart clock rule check decreased the risk of several manual clock operation loops, 
and also change the function groups’ cooperation mode.  
 
Previously, DE, VE and BE would be all responsible to their extracted data info, but now with iClock 
only clock DE would do the clock tree design. VE and BE would just master the iClock application, and 
customize their script for the specific procedure. iClock was kicked off in 2015 December, and 
released its version 1.0 in 2016 March. Now the latest version is 1.8 with quite several new features 
introduced. The in-house tooling has gone through totally three billion gates SoC projects, and now 
it has reached the stability period. Only a little project specific configuration is required for a project 
start, and then iClock would keep precise serving from the project start to the project end. 
 
From the Synopsys tooling application view, iClock is a well customized pre-stage solution which 
keeps the clock data accuracy as a solid base to feed the Spyglass and Design Compiler. With the 
iClock contribution, both of process efficiency and quality got improved for DE, VE and BE. This 
tooling removes the redundant and error-prone operations, which makes DE, VE and BE work more 
closely around iClock. 



SNUG 2018 

 

Page 19 A Synthesized and Consistent Clock Management Solution 
Covering Full Pre-silicon Steps 

 

7. Prospect 

iClock currently has stepped to a stable phase, and only proceeded some improvement. While the 
paper is under preparation, the internal methodology team initiated another large program which 
will collect power and reset information. It is estimated once the three key types of system 
information have been finally synthesized as a solid database, it would play a more important role. 
For example, the power, reset and clock combination would enhance the system scenario coverage, 
and it would be more precise to check if the power sequence is as expected. 
 
iClock not only serves function group but also DFT (Design for Testability) group.  There have been 
already some clock information for DFT clock set and post-process script generation. This tooling 
development is further enlarging the test clock info scope in the running project. iClock has entered 
post-silicon test and driver team vision, they also started to make consistent clock set and check 
header files. 
 
Therefore, the general orientation for iClock development is to extend both of application depth and 
width, and moreover, to push forwards the core consistent database concept for the overall SoC 
development  procedure and  deep cooperating with Synopsys toolings. 

8. Acknowledgement 

This wonderful tooling has went through hard development days, and got kinds of help from concept, 
development, application, maintenance and feedback. Finally, it succeeded and won lots of internal 
users with silicon proven projects. It is appreciated those colleagues involved in iClock growth from 
a baby to an adult. The thanks list involves: QU Fuyang, YU Fuzhen, ZHANG Hua, WANG Bo, WANG 
Dongrui, ZHAO Wenfeng, ZHENG, Xiaoliang and SHEN, Xiaofeng. 

9. References 

[1] Python standard library website https://docs.python.org/3/library/index.html 
[2] Tkinter library website http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html 
[3] Graphviz library website http://www.graphviz.org 

 

  

 

https://docs.python.org/3/library/index.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://www.graphviz.org/

	1.  Introduction
	2.  Background
	3.  Clock Table and Consistent Database
	3.1  Clock Table Merge
	3.2  Clock Table Analysis
	3.3  Smart Clock Edition
	3.4  Edition History Backtrace

	4.  Clock Extraction for Different Procedure
	4.1  Spyglass CDC Script for DE
	4.2  Frequency Requirements for VE
	4.3  STA Script for BE

	5.  GUI Mode for Feature Enhancement
	5.1  Clock Tree Window
	5.2  Clock Graph Window
	5.3  Clock Search Window

	6.  Summary
	7.  Prospect
	8.  Acknowledgement
	9.  References

