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Abstract- This paper focuses on our experiences using three specific aspects of the UVM register layer: front-door 

sequences, the predictor, and register callbacks. The topic of front-door sequences includes how to define a front-door 

sequence and how to use that sequence to extend the capabilities of the register layer beyond sending simple request and 

response transactions to the DUT. The topic of the predictor focuses on understanding the role played by the predictor in 

updating the register model and how to use the predictor in the presence of a front-door sequence. The topic of register 

callbacks includes how to associate callbacks with registers and register fields and how to use callbacks to define special 

register behaviors. Used together, these features provide an important set of mechanisms for extending the capabilities of 

the register layer in several useful ways. 

 

I.   INTRODUCTION 

 

The UVM register layer is a very broad topic. This paper focuses on our experiences using three specific aspects 

of the UVM register layer: front-door sequences, the predictor, and register callbacks. These topics can pose 

particular challenges to practitioners as they move beyond the beginner level because the details and implications of 

these topics are not fully spelled out in the standard UVM documentation. 

When using the UVM register layer, register test sequences make method calls to write or read values to or from 

registers that are instantiated within the hierarchically organized set of UVM register blocks that form the UVM 

register layer for a particular verification environment. At a minimum, the caller of these methods only needs a) a 

reference to the register object, b) whether the operation is a write or a read and c) in the case of a write, the value to 

be written. For example: 

 
task body; 

  regmodel.reg0.write(.value(data), .status(status)); 

  assert( status == UVM_IS_OK ); 

  regmodel.reg0.read(.value(data), .status(status)); 

  assert( status == UVM_IS_OK ); 

  assert( data == expected ); 

 

Figure 1. Calling write and read. 

 

The caller does not need to be aware of the logical or physical address of the register within any memory map, the 

details of the protocol used to communicate with the DUT (Design-Under-Test), the endianness of any data sent 

over the communication interface to the DUT, or the physical location of the register within the DUT. As a 

consequence of this abstraction, it is possible to create UVM register tests that are independent of the location of the 

register within the DUT or the means used to access that register. 

The UVM register object can then access the value of the actual register within the HDL code that represents the 

DUT using one of several mechanisms, the choice being under user control. The default operation of the UVM 

register object (accessed through the variable reg0 in the code fragment above) is to convert each write or read 

method call into a generic transaction (of type uvm_reg_bus_op) that contains kind (write or read), address, data, 

and status fields. This generic transaction is passed to a user-defined object of type uvm_reg_adapter that converts it 

to a protocol-specific transaction. This protocol-specific transaction is then executed on the sequencer within the 

UVM agent connected to the appropriate interface of the DUT. In the case of a read transaction, data read from the 

DUT is passed back upstream to the caller of the read method. This mechanism is known as front door access. 

The alternative to front door access is back door access in which the read or write method call is converted to a 

DPI access that uses the HDL hierarchical path name to access the register within the DUT. Back door access is 



always simpler and faster than front door access because it bypasses the interface to the DUT and instead uses the 

fact that the code is running within a simulation environment, rather than an actual electronic system, to access the 

register contents directly. It is possible to switch to back door access using an argument to the write or read method, 

for example: 
 

regmodel.reg0.write(.value(data), .path(UVM_BACKDOOR), .status(status)); 

 

Figure 2. UVM_BACKDOOR. 

 

II.   USER-DEFINED FRONT DOOR SEQUENCES 

 

As described above, the default operation of the UVM register layer is that each call to read or write is translated 

by the register layer into a single transaction that is executed on the sequencer of a UVM agent. In any situation 

where a single transaction is not sufficient to implement a read or write operation, the user can replace this default 

behavior by setting a user-defined front door for the register. A user-defined front door takes the form of a user-

defined sequence that is executed whenever the register needs to access the value of the register in the DUT. This 

sequence runs on the sequencer associated with the address map in the UVM register block (the same sequencer that 

is used for built-in front door access) and can have any user-defined behavior. 

 

 

 
 

Figure 3. Front door, user-defined front door, and back door. 

 

A user-defined front door is set by creating a new sequence object and passing it as an argument to the 

set_frontdoor method of the UVM register concerned. This might be done from a UVM env during the build phase 

after the instantiation of the UVM register model, for example: 
 

my_vreg_frontdoor_sequence frontdoor; 

frontdoor = my_vreg_frontdoor_sequence::type_id::create(“frontdoor”); 

regmodel.bus.reg0.set_frontdoor(frontdoor); 

 

Figure 4. set_frontdoor. 

 

The open-ended nature of the front door sequence mechanism means that it can be used to address a number of 

different use cases, including unmapped registers, non-linear addressing, and burst mode access. Unmapped 

registers are registers embedded within the DUT that are not directly accessible using memory-mapped transactions 

sent through the external pins. Non-linear addressing implies that the registers or register fields to be accessed 

occupy a non-continuous set of addresses as viewed from the interface to the design-under-test. Burst mode access 



implies that access to a single register or register field within the design-under-test requires a burst mode transaction 

over a memory-mapped bus at the pins of the design-under-test. 

Here we will illustrate the technique with an example of a virtual register whose contents are distributed around 

the DUT in a non-linear way. A single write or read to the virtual register requires two write or read transactions to 

access two nibbles at non-contiguous addresses on the DUT interface. 

The key to creating front door sequences is to understand the use of the rw_info object, which is of type 

uvm_reg_item and is inherited from class uvm_reg_frontdoor. This object holds information about the UVM 

register being written or read, including whether the access is a write or a read (rw_info.kind), the data being written 

or read (rw_info.value), the status of the access (rw_info.status), a reference to the register object itself 

(rw_info.element), and several other properties (refer to the documentation for class uvm_reg_item for further 

details). The address of the register within the address map of the containing register block can be found by calling 

the get_offset method of the register object, having first obtained the register object from rw_info.element. The 

rw_info.value field is actually a dynamic array of type uvm_reg_data_t, so element rw_info.value[0] is used for data 

values that fit within the uvm_reg_data_t type. 
 

class my_vreg_frontdoor_sequence extends uvm_reg_frontdoor;                                                             

  ...  

  task body; 

    uvm_reg        the_reg; 

    uvm_reg_addr_t reg_addr; 

    bit            cmd; 

    uvm_reg_data_t data; 

 

    $cast(the_reg, rw_info.element); // Find the original uvm_reg object 

    reg_addr = the_reg.get_offset(); // Find the address of the register 

     

    cmd  = (rw_info.kind == UVM_WRITE); 

    data = rw_info.value[0][3:0];    // Bottom nibble 

 

    one_transaction( .cmd(cmd), .addr(reg_addr+1), .data(data) ); 

 

    if (cmd == 0)                    // Read command 

      rw_info.value[0][3:0] = data; 

 

    data = rw_info.value[0][7:4];    // Top nibble 

 

    one_transaction( .cmd(cmd), .addr(reg_addr+5), .data(data) ); 

 

    if (cmd == 0)                    // Read command 

      rw_info.value[0][7:4] = data; 

 

    rw_info.status = UVM_IS_OK; 

  endtask 

 

Figure 5. uvm_reg_frontdoor. 

 

Task one_transaction is very straightforward: it sends a single write or read transaction through the UVM driver to 

the DUT. In the case of a read transaction, it copies the data from the response object received from the driver into 

its data argument so that the data can be passed back to the register layer. Note the types of the address and data 

arguments, which are as they appear in the generic register transaction. 
 

  task one_transaction(bit cmd, uvm_reg_addr_t addr, ref uvm_reg_data_t data); 

    bus_tx req; 

    bus_tx rsp; 

    uvm_sequence_item item; 

     

    req = bus_tx::type_id::create("req"); 

    start_item(req); 

 

    req.cmd  = cmd; 

    req.addr = addr; 



    req.data = data; 

 

    finish_item(req); 

 

    get_response(item); 

    $cast(rsp, item); 

    assert(rsp != null); 

     

    if (cmd == 0) 

      data = rsp.data; 

  endtask                                                                                                   

endclass 

 

Figure 6. one_transaction. 

 

There are a couple of subtleties here. The first concerns addressing. Many aspects of the UVM register layer hinge 

around the address map of each UVM register block. A register block may have multiple address maps, where each 

address map is associated with an adapter, a predictor, and the sequencer and monitor of a particular agent. The 

original UVM register regmodel.bus.reg0 will have been placed at a specific offset when it was added to the address 

map of the enclosing register block, for example:  
 

bus_map.add_reg( reg0, ‘h0, “RW”); 

 

Figure 7. add_reg. 

 

Ultimately, all address maps have to be added as sub-maps of a so-called root map, which is found in the top-level 

UVM register block, for example: 
 

root_bus_map.add_submap(bus.bus_map, ‘h0); 

 

Figure 8. add_submap. 

 

The front door sequence can find the address map using the rw_info object, for example: 
 

uvm_reg regs[$]; 

rw_info.local_map.get_root_map().get_registers(regs); 

foreach (regs[i]) 

  $display(“[REGS] %s”, regs[i].get_full_name()); // Print all the regs in the map 

 

Figure 9. rw_info. 

 

The address returned by the call the_reg.get_offset() in the front door sequence will be the address within the 

address map through which the register is being accessed, which by default will be the default_map of the 

containing register block. But in our example this nominal offset within the address map is not the actual address of 

the register(s) within the DUT. The addresses of the top and bottom nibbles are calculated from the original register 

address by the body task of the front door sequence, for example: 
 

one_transaction( .cmd(cmd), .addr(reg_addr+5), .data(data) ); // Top nibble 

 

Figure 10. one_transaction. 

 

The second subtlety concerns the sequencer. The front door sequence will execute on the same sequencer as 

regular front door transactions, that is, the sequencer referred to from the address map. Once again this could be 

found using the rw_info object, for example: 
 

assert( rw_info.local_map.get_root_map().get_sequencer() == this.get_sequencer()); 

 

Figure 11. get_sequencer. 

 

In the example above, the front door sequence generates transactions on the same sequencer that the regular front 

door transaction would run on, but there is no obligation for it to do so. A front door sequence can do anything! It 



could perform further register reads or writes, execute transactions on multiple agents, use the DPI, access external 

files, or perform calculations. This is the beauty of the user-defined front door. 

Another case where a front door sequence can prove useful is in passing response transaction objects back up to 

the register test sequence. If a driver passes an explicit response back upstream to the sequencer, this response object 

would be available to a regular UVM sequence (as shown in task one_transaction above) but is not made available 

to the register sequence that made the original read or write method call. It is possible to make the response available 

to the register sequence by utilizing the extension argument to the read and write methods of the register layer, but 

doing so requires the use of a front door sequence because the extension argument is not always accessible from the 

register adapter of the register layer. The extension argument is available within the uvm_reg_item class as returned 

by the get_item method of class uvm_reg_adapter, but this is only available for the bus2reg method, not the reg2bus 

method, so the response cannot be passed back upstream through the register adapter. This means that when using 

the built-in front door with the UVM register adapter, it makes sense to use the extension argument to the write 

method call but not to the read method call. 

In order for the register test sequence to get the response transaction back from the driver, the front door sequence 

must create a suitable response object and pass it as the extension argument to the write or read method. The key 

point here is that the object must be created first and passed into the method as opposed to being created by the 

method: 
 

bus_tx rsp1; 

rsp1 = bus_tx::type_id::create(“rsp1”); 

 

regmodel.reg0.write(.value(‘hab), .status(status), .extension(rsp1)); 

regmodel.reg0.read (.value(data), .status(status), .extension(rsp1)); 

 

assert(status == UVM_IS_OK); 

assert(data == ‘hab); 

assert(rsp1.data == ‘hab); 

 

Figure 12. extension. 

 

Of course, passing the data in the response object in this way is pointless since the data is available anyway. The 

point is that additional information could be made available using the response object. The interesting work is done 

by the front door sequence, which copies the contents of the response transaction from the driver back into the 

extension argument using the rw_info object: 
 

task body; 

  ... 

  finish_item(req); 

 

  get_response(item);            // Get response object from driver 

  $cast(rsp, item); 

  assert(rsp != null); 

  rw_info.extension.copy(rsp);   // Copy response into the extension argument 

 

  if (cmd == 0) 

    rw_info.value[0] = rsp.data; // Copy data into the value argument 

  ... 

 

Figure 13. rw_info.extension. 

 

III.   USER-DEFINED BACK DOORS 

 

Although it is possible, it is not particularly useful to associate a user-defined front door sequence with a memory 

in the register layer because back door access is generally recommended for memories. However, it is possible to set 

a user-defined back door for a memory (or for a register, for that matter), which would allow the user to deal with 

any kind of irregular mapping between the memory in the register layer and the memory in the design-under-test. 

A back door is an object of a class that extends uvm_reg_backdoor, for example: 
 

class my_mem_backdoor extends uvm_reg_backdoor; 

  `uvm_object_utils(my_mem_backdoor) 



 

  function new (string name = ""); 

    super.new(name); 

  endfunction 

 

  virtual task write(uvm_reg_item rw); 

    bit ok; 

    int n = rw.value.size(); 

    for (int i = 0; i < n; i++) 

    begin 

      ok = uvm_hdl_deposit( 

           $sformatf("top_tb.th.uut.mem[%0d]", rw.offset + i), rw.value[i]); 

      assert(ok); 

    end 

    rw.status = UVM_IS_OK; 

  endtask 

   

  virtual task read(uvm_reg_item rw); 

    bit ok; 

    int n = rw.value.size(); 

    for (int i = 0; i < n; i++) 

    begin 

      ok = uvm_hdl_read( 

           $sformatf("top_tb.th.uut.mem[%0d]", rw.offset + i), rw.value[i]); 

      assert(ok); 

    end 

    rw.status = UVM_IS_OK; 

  endtask 

   

endclass 

 

Figure 14. uvm_reg_backdoor. 

 

The user-defined back door then needs to be set for the appropriate register or memory objects: 
 

... 

my_mem_backdoor backdoor; 

backdoor = my_mem_backdoor::type_id::create(“backdoor”); 

regmodel.bus.mem.set_backdoor(backdoor) 

 

Figure 15. set_backdoor. 

 

The example above is for illustrative purposes only because it implements straightforward access to the contents 

of the memory using an HDL path name, which is pretty much what the built-in back door would do anyway. Note 

that the overridden write and read methods are passed an object of type uvm_reg_item with the fields value, offset, 

and status, the same technique as was used in the user-defined front door shown previously. Also note the use of the 

UVM HDL back door access support routines uvm_hdl_deposit and uvm_hdl_read. These calls are of interest in that 

they provide the user with access to the same DPI code that is used to implement built-in back door access.  

Here is an example of performing a burst write operation through such a memory back door: 
 

task body; 

  uvm_reg_data_t burst_data[]; 

  burst_data = new[4]; 

  for (int i = 0; i < 4; i++) 

    burst_data[i] = 'h10 + i; 

 

  regmodel.mem.burst_write(.status(status), .offset('h10), .value(burst_data), 

                           .path(UVM_BACKDOOR), .parent(this)); 

  assert(status == UVM_IS_OK); 

 

Figure 16. UVM_BACKDOOR. 

 



 

IV.   THE PREDICTOR 

 

Each UVM register contains a mirror value that is meant to mirror the current value of the actual register within 

the DUT. The mirror value allows the user to optimize the number of reads and writes to registers within the DUT 

by reading the mirror value instead of the actual value when the mirror is known to be up-to-date, and by only 

writing the actual value to the DUT when the value being written (the desired value) is different from the mirror 

value, for example: 
 

value = regmodel.reg0.get_mirrored_value();  // Return mirror without accessing DUT 

regmodel.reg0.set( .value(‘hab) );           // Set the desired value 

regmodel.reg0.update( .status(status) );     // Write desired value to register 

regmodel.update( .status(status) );          // Only write if desired != mirrored 

 

Figure 17. get_mirrored_value. 

 

There are two ways in which the mirror values in the UVM register layer can be kept in step with the actual 

register values in the DUT: auto-prediction and explicit prediction. With auto-prediction, the mirror values are 

refreshed whenever a read or write call is performed through the register layer. With explicit prediction, the analysis 

port of a UVM monitor component is connected to a UVM predictor object, which in turn is connected to the 

address map and thus to the registers within that address map. Explicit prediction is usually preferred because it 

allows the mirror values in the register layer to be refreshed to reflect all of the traffic visible at the level of the DUT 

interface, not just the read and write calls through the register layer. 

To use explicit prediction, the register adapter must be instantiated and connected to the address map and the 

sequencer, as usual. The predictor must be instantiated and connected to the address map, the adapter, and the 

monitor analysis port. For example: 
 

reg2bus_adapter             m_reg2bus_adapter; 

uvm_reg_predictor #(bus_tx) m_bus2reg_predictor; 

... 

 

// Build phase 

m_reg2bus_adapter   = reg2bus_adapter::type_id::create("m_reg2bus_adapter", this); 

m_bus2reg_predictor = uvm_reg_predictor #(bus_tx)::type_id::create( 

                                              "m_bus2reg_predictor", this); 

... 

 

// Connect phase 

regmodel.bus_map.set_sequencer(m_bus_agent.m_sequencer, m_reg2bus_adapter); 

regmodel.bus_map.set_auto_predict(0); 

 

m_bus2reg_predictor.map     = regmodel.bus_map; 

m_bus2reg_predictor.adapter = m_reg2bus_adapter; 

 

m_bus_agent.analysis_port.connect(m_bus2reg_predictor.bus_in); 

 

Figure 18. uvm_reg_predictor. 

 

Explicit prediction can interact with read and write operations in unexpected ways because the predictor will 

refresh the mirror values in the register layer independently from the values that are passed though read and write 

method calls. With explicit prediction, there are two paths back from the UVM agent to the register layer, one path 

through the predictor and another path that uses the response transaction sent back through the adapter. 

In the case of a user-defined frontdoor sequence, the front door sequence can and should return a value from the 

read method by assigning rw_info.value = data_being_read, even in the presence of an explicit predictor. The 

explicit predictor will refresh the mirror value correctly regardless of whether or not the user-defined front door 

sequence returns the correct value. On the other hand, the path from the analysis port of the monitor back to the 

explicit predictor is always necessary in order to refresh the mirror value correctly, even though the front door 

sequence returns the correct value. If the monitor is not connected to the predictor, the mirror value will not be 

refreshed. 



In the presence of an explicit predictor, methods of the UVM register object have the following behavior: 
 

regmodel.reg0.read(.value(value)); // Return the value from the front or back door 

value = regmodel.reg0.get_mirrored_value(); // Return the value from the predictor 

value = regmodel.reg0.get();                // Return the desired value 

 

Figure 19. read. 

 

V.   REGISTER CALLBACKS 

 

The mirror value within each register in the register layer should accurately reflect the value of the actual register 

within the design-under-test, even in the presence of quirky registers for which read and write operations have some 

side-effect that goes beyond a straightforward read or write to a single register or field. The register layer supports a 

range of built-in access policies to model such effects, for example the policy WSRC, in which a write sets all the 

bits of the register and a read clears all the bits of the register. For example: 
 

class fancy_reg extends uvm_reg; 

   `uvm_object_utils(fancy_reg) 

 

   rand uvm_reg_field F1; 

 

   function new(string name = ""); 

      super.new(name, 16, UVM_NO_COVERAGE); 

   endfunction 

 

   virtual function void build(); 

      F1 = uvm_reg_field::type_id::create("F1"); 

      F1.configure(this, 16, 0, "WSRC", 1, 16'h0000, 1, 1, 0); 

   endfunction 

endclass 

 

Figure 20. WSRC. 

 

It is important to understand that by selecting a quirky access policy such as WSRC for the UVM register, you are 

merely ensuring that the mirrored value in the UVM register will be updated to reflect the value of the actual 

register. It is still necessary to model the actual behavior of the quirky register within the HDL code that represents 

the DUT itself. For example: 
 

// Fancy register 

regmodel.reg2.write(status, .value('h0001), .parent(this)); 

 

expected = 'hffff; 

data = regmodel.reg2.get_mirrored_value(); // All the bits should have been set 

assert(data == expected); 

 

regmodel.reg2.read(status, .value(data), .parent(this)); 

assert(data == expected); 

 

expected = 'h0000; 

data = regmodel.reg2.get_mirrored_value(); // All the bits should have been cleared 

assert(data == expected); 

 

Figure 21. get_mirrored_value. 

 

To model more complex behaviors, the user can associate callbacks with registers, register fields, memories, and 

backdoor access in the register layer, and these callbacks can be used to predict the mirror values stored in the 

register layer. The pre_read and post_read callbacks are called before and after each call to the read method, while 

the pre_write and post_write callbacks are called before and after each call to the write method. Here is an example 

that uses callbacks to set the mirror value of a quirky register where a write toggles the contents of the register and a 

read clears the register. First we need to define a callback class: 
 



class my_reg_callbacks extends uvm_reg_cbs; 

 

  task post_read(uvm_reg_item rw); 

    bit ok; 

    uvm_reg the_reg; 

    assert(rw.element_kind == UVM_REG); 

    $cast(the_reg, rw.element);   

 

    // Predict the side-effect of the register read 

    ok = the_reg.predict(0, -1, UVM_PREDICT_DIRECT); 

    assert(ok); 

  endtask 

 

  task post_write(uvm_reg_item rw); 

    bit ok; 

    uvm_reg the_reg; 

    assert(rw.element_kind == UVM_REG); 

    $cast(the_reg, rw.element);   

 

    // Predict the side-effect of the register write 

    ok = the_reg.predict(~rw.value[0], -1, UVM_PREDICT_DIRECT); 

    assert(ok); 

  endtask 

 

endclass 

 

Figure 22. uvm_reg_cbs. 

 

Then we instantiate a callback object and add it to the register object. This might be done in the build phase of a 

UVM env. In general a callback could be added either to a register or to a field provided the callback methods have 

been overridden appropriately. This paper shows one example of each. 
 

my_reg_callbacks cb; 

cb = new; 

uvm_reg_cb::add(regmodel.bus.reg0, cb); 

 

Figure 23. add. 

 

Register callbacks have a number of use cases, including the modeling of quirky registers described above and the 

modeling of aliased registers, where a single physical register appears at several different places in an address map. 

By associating user-defined callbacks with a set of aliased registers in the register layer, it is possible to keep the 

mirror values synchronized across the full set of aliased registers. 

Here is an example that uses register callbacks to implement a register model for a set of aliased registers. In the 

register model, registers regi[j], for j = 0 to 15, are each placed at a different address. regi[n], regi[n+4], regi[n+8], 

and regi[n+12], for n = 0 to 3, are aliases for the same physical register. The post_write callback method predicts the 

side-effect of the register write by modifying the mirror value of the aliased registers. 
 

class my_reg_field_callback extends uvm_reg_cbs; 

 

  uvm_reg_field m_alias_regs[]; 

   

  function new(uvm_reg_field alias_regs[]); 

    m_alias_regs = alias_regs; 

  endfunction 

 

  virtual task post_write(uvm_reg_item rw); 

    for (int i = 0; i < m_alias_regs.size(); i++) 

    begin 

      bit ok = m_alias_regs[i].predict( rw.value[0] ); 

      assert(ok); 

    end 

  endtask 



endclass 

 

Figure 24. post_write. 

 

The callbacks are instantiated and added to the appropriate register objects in the build phase: 
 

my_reg_field_callback cb; 

 

uvm_reg_field m_alias_regs[] = new[3]; 

 

// Loop through the full set of registers   

for (int i = 0; i < 16; i++) 

begin 

  int n = 0; 

   

  // For each register, loop through the aliased addresses 

  for (int j = i % 4; j < 16; j += 4) 

  begin 

    // Build an array of aliased registers 

    if (j != i) 

      m_alias_regs[n++] = regmodel.bus.regi[j].F; 

  end 

  assert(n == 3); 

 

  // Create a unique callback for each register with the appropriate set of aliases 

  cb = new( m_alias_regs ); 

  uvm_reg_field_cb::add( regmodel.bus.regi[i].F, cb); 

end 

 

Figure 25. uvm_reg_field_cb. 

 

Register callbacks have a number of pitfalls. UVM provides four callbacks pre_write, post_write, pre_read, and 

post_read that apply to registers and register fields, and a fifth callback post_predict that only applies to register 

fields. In the presence of an explicit predictor, the post_predict callback is only called when the predictor receives an 

incoming analysis transaction from the UVM agent it is connected to, and should be used with caution. 

The mirror value can be refreshed by calling the predict method of a register or a register field, as shown in the 

two examples above. Care must be taken not to attempt to modify the mirror value of a register from the 

post_predict callback of the register itself, because this can result in a recursive call to post_predict. Similarly, 

register callbacks should not initiate operations that would result in mutually recursive callbacks across sets of 

registers. It is better to call the predict method from one or more of the pre/post_write/read callbacks, as shown 

above, and to avoid calling predict from the post_predict callback. 

The predict method, called to refresh the mirror value, has a kind argument that is set to one of three values: 

UVM_PREDICT_DIRECT, UVM_PREDICT_READ, or UVM_PREDICT_WRITE. The default value 

UVM_PREDICT_DIRECT simply overwrites the mirror with the given value. In the other two cases, the value is 

modified according to the register field access policy before the mirror is overwritten in order to model quirky 

register effects. 

 

VI.   CONCLUSION 

 

User-defined front door sequences and register callbacks provide considerable flexibility when modeling the 

behavior of DUT registers in the UVM register layer. Front door sequences are useful whenever there is no simple 

one-to-one correspondence between register read and write method calls and transactions executed by UVM agents. 

Register callbacks are useful whenever a register read or write method call has side effects that go beyond simply 

reading or writing the value of the given register or register field. Both mechanisms interact with explicit prediction, 

and the details of these interactions, as described in this paper, need to be understood and considered when using 

front door sequences and register callbacks. 
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