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Abstract- A staple of modern verification is constrained random simulation, which involves generation of 

random transaction streams controlled through a set of adjustable constraints. One of the major challenges of 

verification is finding the right combinations of constraints to produce the most stressful tests with the widest 

variety of random stimulus. With typical nightly and weekly regressions generating billions of simulation 

cycles in tens of thousands of tests, it is impossible for a human to process all available data. Verification 

engineers therefore use various aggregation and approximation methodologies, such as code and functional 

coverage, to gain insight into regression results. However, the fields of machine learning and data mining 

excel at exactly these kinds of problems by finding patterns in this vast repository of data and extrapolating 

insights to guide us in the best direction. This paper presents a methodology in which coverage results and 

machine learning algorithms are used to generate tests most likely to find new bugs in a design. 
 

I. INTRODUCTION 

Modern designs are extremely complex. It is impossible to manually come up with all the stimulus necessary to 

completely validate the design. To solve this problem, verification engineers rely heavily on constrained random 

simulations. By writing a set of constraints and generating random streams of transactions, one could hit both 

common and uncommon design corners. 

 

However, random testing is also very inefficient and, therefore, expensive. The common experience involves 

running millions or even billions of random simulation cycles and finding corner-case bugs that should have been hit 

in a fraction of those cycles. In my analysis, I have seen that the most frequently hit coverage points tend to be hit 

orders of magnitude more often than the rare ones. Figure 1 shows data from one recent functional coverage run, 

illustrating that 10% of coverage points collect over 99% of total coverage bin hits. The other 90% are hit very 

rarely, and bugs that are hidden behind those will require billions of simulation cycles to reach.  

 

 
 

Figure 1. 10% of coverage points hit most often account for most of the coverage hits in a large regression. Data is collected by accumulating 

coverage hit totals starting with the most common point. 
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In this paper, two ideas are presented to make random simulation more effective at finding these hard-to-find bugs. 

The first section offers a new type of coverage designed to provide feedback on the kind of events that are likely to 

expose bugs. The second section describes an application of machine learning algorithms that uses coverage 

feedback to select and tune random tests, with the goal of increasing the coverage of rare states. 

 

II. TOGGLE-PAIR COVERAGE 

Non-trivial bugs require a combination of events and state changes to occur in close proximity in time. Most bugs 

are not particularly deep and do not require thousands of cycles to set up, but generally take a couple of events lining 

up that do not often happen together. 

 

Verification engineers bias their stimulus toward areas that are likely to cause bugs, and write functional coverage to 

ensure the stimulus does what they expect it to do. This is a great way to use their experience and knowledge to find 

the most bugs as quickly as possible. However, once both code and functional coverage are 100% hit, it is hard to 

know where to go next. Code coverage is too easy to hit, and functional coverage is subjective, and by definition, 

already covers everything that is considered important.  

 

Therefore, there is a need for a new kind of coverage that is as objective as code coverage, but much harder to 

complete (if not impossible), while simultaneously guiding us toward missed bugs.  

 

“Design state space” is the ultimate coverage metric, often represented as all possible combinations of values in all 

flops in the design. By hitting every one of those points, it can be safely said that the design has been made to do 

everything that it can possibly do. However, that is far from a practical coverage measure – at 2
n
, where n is the 

number of flops, it very quickly becomes impossible to cover even a tiny portion of it.  

 

On the other hand, flops toggling in the design do represent state changes and should still be considered in some 

way. Straightforward flop toggle coverage is one of the common verification metrics. However, it is much too 

simple, like code coverage. A small number of well-crafted directed tests are generally able to close flop toggle 

coverage with very little effort, while still missing a number of more complicated bugs. 

 

If flops toggling are considered as design events, going back to the concept that bugs occur when events line up 

together in time, then having two flops toggle in proximity to each other (in time) would represent a couple of events 

lining up together. By monitoring all flop toggles and extracting all toggles pairs, a new kind of coverage has been 

created, which can be referred to as ‘toggle pair coverage’.  

 

There are several good properties of toggle pair coverage. The total number of bins is n
2
, where n is a number of 

flops in the design. This is, on one hand, much larger than code coverage, but still quite manageable. Figure 2 shows 

how the number of bins hits a sweet spot between plain toggle coverage and the full state space. It is large enough 

that it is highly unlikely that all bins can be hit and there is likely always room for further improvement.  

 

The toggle pair coverage is also objective, removing the engineer’s bias towards parts of the design or types of 

traffic that has already been covered extensively. 

 
Figure 2. Toggle pair coverage provide a large, but manageable set of bins,  

compared to straight flop coverage and full state space. 

 



 

A. Interpreting results 

There are a few ways to interpret coverage results. First, one can count how many different toggle pair coverage 

bins
1
 are hit and define that as the coverage breadth. The more unique bins hit by a particular test, the wider the 

coverage of the test is, which intuitively seems like a good thing. While that provides a good indication of how 

much of the design is covered, it does not help with the overall goal of figuring out which tests to run more and 

which to run less. In order to do that, a deeper analysis of the data is needed. 

 

Looking at the total volume of hits is also important. Hitting many bins a few times each vs. hitting a few bins many 

times indicates a very different test profile. Let us define the total number of toggle pair bins hit, including multiple 

hits of the same bin, as the test activity volume. 

 

Naturally, the most stressful tests will produce high toggle pair coverage in both volume and breadth – they do a lot 

of different things, and they do them frequently. However, many of these tests will repeatedly pound on the same 

toggle pair bins. This is an inefficient use or resources, and an important goal is to reduce or even eliminate such 

waste. 

 

To avoid rewarding tests that do common things, let us define another metric. By examining how often each of the 

toggle pair bins is hit and by how many tests, the rarity of bins can be defined to be inversely proportional to that 

quantity. Bins that are often hit by many of the tests would therefore have a low rarity value, while the ones that are 

hit very infrequently would have a high rarity value. This metric is powerful, as it allows one to filter the toggle pair 

coverage results and focus the analysis of breadth and volume of tests to rare bins only. 

 

 

 
Figure 3. Volume (X-axis) vs. Breadth (Y-axis) plot of 1000 tests.  Plot on the left shows unfiltered values of  

volume (total hits) and breadth (unique hits), while the plot on the right shows values after they have been filtered based on their rarity.  

 

 

Figure 3 shows how the tests’ locations on the breadth vs. volume plot change once the rarity filter is applied. While 

the initial chart showed a large grouping of stressful tests in the top right corner of the chart, many of them have 

migrated to the left once the easily hit bins have been removed. The new chart shows that only a small percentage of 

tests exercise rare bins effectively, and, ideally, these are the tests to be run more of because they provide more 

unique events with less simulation cycles. 

 

The final step is to collapse the filtered breadth and volume metrics into one number, a score for each test. There are 

many common functions that could work here. F1 score [1] is commonly used in machine learning to reward results 

that score high in both dimensions and penalize those that are bad in either one. However, F1 would penalize non-

stressful tests that hit many of the rare bins (high breadth, low volume) too strongly, and there is still significant 

value in selecting those tests. The following function was found to produce the best results, which is essentially the 

distance of the test point from origin, with an option to scale up the breadth axis, and an option to stretch out the 

values between good and bad tests with a power factor: 

 

                                                           
1
 A toggle pair coverage “bin” is one pair of flops in the design 



Score = (Volume
2
 + Rare_Factor * Breadth

2
)

Power_Factor 

 

 

The higher the Rare Factor, the more the score will favor tests that hit many different rare bins. The higher the 

Power Factor, the more spread out the scores will be – valuing high-scoring tests more than low-scoring ones. This 

can later be used as learning rate parameter in selection algorithms. 

 

Table I shows an example of how the test scores can be modified using these optional parameters. The two factors 

give us the ability to tune the scores quite significantly, as the table shows. Test #1 is very stressfully, but narrowly 

focused, while test #2 hits a wide range of rare bins, with a much lower overall stress. While test #1 nominally 

scores higher, one could make test #2 much more valuable by bumping up the Rare Factor. Similarly, tests 13 and 

below are overall poor tests, but the nominal score has them scoring only slightly below the top tests. By setting the 

Power Factor to 4, the scores for those tests become significantly smaller than the top tests.  

 

Varying these settings allows for different interpretation of results, and many combination yield interesting results. 

There is no one best way to determine these parameters as they are heavily dependent on the particulars of the 

testbench and the design under test. Experimentation, or even running machine learning algorithms on these meta-

parameters, is needed to determine the optimal values for a particular setup.  

 

This is now a way to find which tests exercise rare combinations of events in the design most commonly. 

 
TABLE I 

TEST SCORES FOR VARIOUS RARE AND POWER FACTOR VALUES 

     
    Scores     

   
Rare Factor 1 1 1 2 2 

   
Power Factor 0.5 4 10 1 5 

     
  

   
  

Test Volume Breadth norm_vol norm_brd   
   

  

1 52866820 1635913 1.00 0.58 1.16 3.22 18.64 2.36 73.09 
2 24083754 2806373 0.46 1.00 1.10 2.13 6.59 4.21 1318.67 
3 44567961 1842487 0.84 0.66 1.07 1.70 3.76 2.43 85.58 
4 43412138 1603645 0.82 0.57 1.00 1.00 1.01 1.98 30.46 
5 34938147 1877157 0.66 0.67 0.94 0.61 0.29 2.23 54.70 
6 37187583 1714573 0.70 0.61 0.93 0.57 0.24 1.99 31.04 
7 31292009 1962939 0.59 0.70 0.92 0.50 0.17 2.31 65.39 
8 14982993 2278261 0.28 0.81 0.86 0.30 0.05 2.72 147.93 
9 26646991 1842955 0.50 0.66 0.83 0.22 0.02 1.98 30.36 

10 34902126 1338068 0.66 0.48 0.81 0.19 0.02 1.35 4.40 
11 29705209 1581578 0.56 0.56 0.80 0.16 0.01 1.59 10.04 
12 12999333 1952907 0.25 0.70 0.74 0.09 0.00 2.00 31.80 
13 15764516 1482763 0.30 0.53 0.61 0.02 0.00 1.21 2.55 
14 8775679 1058515 0.17 0.38 0.41 0.00 0.00 0.60 0.08 
15 13248153 466477 0.25 0.17 0.30 0.00 0.00 0.17 0.00 

 

 

III. GENETIC ALGORITHM 

My goal was to use the scoring methodology in part II to devise an algorithm that would generate a list of tests that 

would stress the rarely reached parts of the design as often as possible, thereby increasing the chance of finding new 

bugs. For this, machine learning algorithms were used, which excel at analyzing large amounts of data and 

recognizing the patterns. 

 

In machine learning, it is often the case that the data and its interpretation make the difference between success and 

failure, and algorithm selection only gives incremental benefits. Therefore, while there are many more advanced and 

effective learning algorithms available, this paper uses one of the simplest, which is easiest to get up and running. 

The algorithm is known as a Genetic Algorithm [2]. 

 

In this particular application, the algorithm works in the following way: 



 

1. The initial population is a random selection of tests, typically the normal list of tests used in nightly or 

weekly regressions. 

2. For each test, toggle pair coverage is collected, and the score is calculated.  

3. The next generation is determined through a mix of as-is tests from current generation, mutated tests, and 

brand new randomly generated tests. A common distribution used that has been found to work in most 

situations is to carry over 10% of the tests, generate 15% of new tests, and mutate the rest (75%). In 

testbenches with a particularly high test state space, a larger proportion of new tests could work better, 

giving more tests a chance to be picked. 

4. Repeat steps 2 and 3 
 

 

The mutation of tests is a key part of this algorithm. The test must be modified in such a way to produce different, 

yet generally similar results. Too similar, and all generations will look very much the same, and no progress towards 

a better selection of tests will be made. Too different, and results become random, with scoring having little impact 

on future tests. 

 

In our testbench, each test is controlled through a set of about 150 command line options. By running a test with the 

same, or almost the same, set of command line options, and varying the random seed, tests that fit the above criteria 

can be generated.  

 

A. Iterations and Analysis 

Accurate algorithm progress evaluation is critically important. In each iteration, a number of charts and metrics are 

generated to provide information about the current status. Table II shows some of the information gathered from 

iteration to iteration. 
TABLE II 

CHARS AND METRICS GENERATED IN EACH ITERATION 

Information Description 

Plot of breadth vs. volume, for all toggle 

pair coverage bins 

Shows the overall distribution of tests, and gives a hint at the 

variety of tests (Figure 3). 

Plot of breadth vs. volume, for rare toggle 

pair bins only 

Comparing from iteration to iteration, shows whether common 

tests are being filtered out (Figure 3). 

Number of new bins added and bins lost 

over iteration 

If the algorithm is working well, common bins will still be hit even 

when selected against them, while new rare bins will be added as 

‘rare’ tests are selected. This plot shows us how well that is 

working (Figure 5). 

Number of fails per iteration Any large spikes in failed tests could indicate that an iteration has 

hit some sensitive spot in the design, or that the test generator is 

producing invalid tests. This metric allows us to flag those 

iterations for review (Figure 4). 

Total number of bins covered The cumulative count of toggle pair bins covered by all iterations 

should grow if the algorithm is still optimizing the test selection. 

Once this curve flattens out, it is probably a good time to stop 

iterating (Figure 4). 

Number of total bins considered rare Another good indicator that the algorithm is working, and when 

the iterations should stop. By optimizing for test hitting rare bins, 

some of the rare bins will no longer be considered rare as many of 

the selected tests will be hitting them often. If this curve is flat, or 

has stopped decreasing, the iterations should likely end (Figure 6). 



 
Figure 4. The average (in black) number of bins hit by a test per iteration, as well as 

the maximum (in red) number of bins hit by a test. ‘F’ and ‘U’ indicate fails, and unique fails. 
 

 
Figure 5. Number of bins hit in iteration that have not been hit previously (new bins), and  

the number of bins that have been previously hit but are no longer covered in current iteration. 
 

 
Figure 6. Percentage of bins considered rare in each iteration. As test selection improves and stimulus is 

better distributed, the number of overall rare events goes down. 

 

 



IV. CLUSTERING 

In many cases, the above methodology produced excellent results by itself. However, on some of the larger designs, 

a problem frequently showed itself. A large design is likely to have several areas of toggle pair coverage where rare 

bins exist. The ideal goal is to find tests that cover all of those areas of the design. In practice, though, there will be a 

distinct set of tests that hit each of the desired areas, and some areas will be easier to hit frequently than others. In 

those situations, the tests that are hitting the “easier to hit frequently” areas will score higher than tests hitting hard-

to-hit area, and will overwhelm them in a few iterations. One approach is to group tests by the coverage areas that 

they primarily hit, and run individual optimization and selection within each group. 

 

For this purpose, another kind of machine algorithm was needed – a clustering algorithm. This is a type of 

unsupervised learning algorithm, in which the operator does not tell the machine what the desired answer is, but 

allows it to look through the data and find a pattern on its own. The most common, and also very effective, 

algorithm in this group is called k-means clustering [3] algorithm. Given a set of data points, and the number of 

clusters one would like to generate, it groups the similar data together. 

 

The data points needed by the algorithm are simply the toggle pair coverage data, normalized so that tests that hit the 

same bins with any frequency and are considered similar. By comparing differences between normalized toggle-pair 

data, k-means clustering locates test groups exercising the same events combinations. 

 

The data can be fed into k-means directly, but it is again important to be able to visualize the clustering to see if it 

makes sense. To visualize the data, it must converted into 2D or 3D, for which an algorithm called multi-

dimensional scaling (MDS) [4] is used. MDS will take a matrix of differences between points and plot them in 

2D/3D in such a way that similar points are near each other, and different points are far away. Figure 7 shows one 

such plot.  

 
Figure 7. Plot of toggle-pair coverage similarity between tests. Hand-drawn clustering is 

one possible way to group similar tests. 
 

Once the grouping is established, each cluster can be treated as a completely separate regression. The test scores are 

only compared within the same cluster, and distribution of new/carry-over/mutated test selection is carried over for 

each cluster. 

 

V. RESULTS 

Early results are quite promising. Optimized regressions have consistently failed more often than non-optimized 

ones, and have uncovered a larger number of unique failures. Tables III and IV show two examples, one from an 

earlier milestone where it was still easy to find new bugs, and one from a more recent regression where bugs were 

starting to dry up. 



 
TABLE III 

FAIL RATES AND UNIQUE FAIL SIGNATURES IN AN EARLY-PROJECT EXPERIMENT 

Regression Test Count Fail Count Pass Rate Cycles Unique 

Signatures 

Regular weekly run  30000  24  99.92  173.6 Million 4  

6 iterations of 500 tests  2749  41  98.5  15.4 Million  5  

Large run using 6th iteration 

test selection  
30000  469  98.43  166.1 Million 8  

 
TABLE IV 

FAIL RATES AND UNIQUE FAIL SIGNATURES IN MID-PROJECT EXPERIMENT 

Regression Test Count Fail Count Pass Rate Cycles Unique 

Signatures 

Large weekly run  10000  5  99.95  56.9 Million  5  

8 iterations of 1000 tests  7327  16  99.78  41.7 Million  6  

 

In table III, after the 6
th

 iteration was reached, the population of 500 tests was used to generate a full 30,000 test 

regression through the same mutation methodology followed from iteration to iteration – i.e., each test’s controls 

were slightly modified and new random seeds were generated. The resulting regression showed an order of 

magnitude higher number of failed tests, and double the number of unique fail signatures. 

 

These results show that this methodology can be effective at producing higher rates of failures in smaller number of 

simulation cycles, while simultaneously exposing new bugs, through new unique fail signatures. 

 

VI. FUTURE WORK 

In a non-academic setting, it is often desirable to be able to show some results as quickly as possible. While this 

paper presents a complete solution to a problem, there are many other avenues to explore to further improve the 

results of this process.  

 

For example, while toggle-pair coverage yields very good results in our experiments, it would be very interesting to 

run the same process through more traditional coverage data, like code and functional coverage. 

 

In particular, though, there are many more machine learning algorithms that could be applied to this problem to 

further enhance and improve efficiency of test selection. 

 

A. Neural Networks 

The current learning algorithm relies on running each of the selected tests to learn about its properties. It has no way 

of inferring what a test that has never been run will do. However, other machine learning algorithms exist that could 

learn the effects of each of the test controls, and predict what a test will do without running it. Neural networks are 

particular powerful in these kinds of situations. 

 

B. Anomaly Detection 

Anomaly detection algorithms are used to detect credit card fraud, for example [5], as they search for unusual 

payment patterns. That same class of algorithms could be used to analyze coverage information to detect tests that 

are significantly different from others, flagging them for further analysis. These tests could be reaching novel parts 

of the design state space, or perhaps doing nothing interesting at all – in both cases, this would be important to 

know. 

 

C. Meta-learning 

Our genetic algorithm has many parameters – apart from the rare and  power factors described in the paper, each run 

has several others. How many tests to run, how many iterations, what is considered a rare point, how many test 

should mutate and how many should stay the same? Through trial and error, a good set of parameters was reached, 

but they could be optimized further by a more formal analysis. Another genetic algorithm could, in fact, be used to 

iterate through many different options and find the best combinations. 
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