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RISC-V is a new ISA (Instruction Set Architecture) 
that introduces high level of flexibility into processor 
architecture design, and enables processor 
implementations tailored for applications in a variety 
of domains, from embedded systems, IoT, and 
high-end mobile phones to warehouse-scale cloud 
computers. The downside of this extent of flexibility 
is the verification effort that must be devoted to all 
variants of the RISC-V cores. In this article, Codasip 
and Mentor aim to describe their methodology of 
effective verification of RISC-V processors, based on 
a combination of standard techniques, such as UVM 
and emulation, and new concepts that focus on the 
specifics of the RISC-V verification, such as configura- 
tion layer, golden predictor model, and FlexMem 
approach.

 
INTRODUCTION 
RISC-V is a free-to-use and open ISA developed at 
the University of California, Berkeley, now officially 
supported by the RISC-V Foundation [1][2]. It was 
originally designed for research and education, but 
it is currently being adopted by many commercial 
implementations similar to ARM cores. The flexibility 
is reflected in many ISA extensions. In addition to 
basic Integer (“I”/”E”) ISA, many instruction extensions 
are supported, including multiplication and division 
extension (“M”), compressed instructions extension 
(“C”), atomic operations extension (“A”), floating-point 
extension (“F”), floating-point with double-precision 
(“D”), floating-point with quad-precision (“Q”), and 
others. By their combination, more than 100 viable 
ISAs can be created.

Codasip is a company that delivers RISC-V IP cores, 
internally named Codix Berkelium (Bk). In contrast 
to the standard design flow, as defined for example 

in [3][4], the design flow utilized by Codasip is 
highly automated, see Fig. 1. Codasip describes 
processors at a higher abstraction level using an 
architecture description language called CodAL. 
Each processor is described by two CodAL models, 
the instruction-accurate (IA) model, and the cycle-
accurate (CA) model. The IA model describes the 
syntax and semantics of the instructions and their 
functional behavior without any micro-architectural 
details. To complement, the CA model describes 
micro-architectural details such as pipelines, 
decoding, timing, etc. From these two CodAL 
models, Codasip tools can automatically generate 
SDK tools (assembler, linker, C-compiler, simulators, 
profilers, debuggers) together with RTL and UVM 
verification environments, as described in [5]. In UVM, 
the IA model is used as a golden predictor model, 
and the RTL generated from the CA model is used 
as the Design Under Test (DUT). Such high level of 
automation allows for very fast exploration of the 
design space, producing a unique processor IP with 
all the software tools in minutes.

This article aims to demonstrate that the flexibility of 
RISC-V ISA presents benefits as well as challenges, 
namely in verification. We will show how to overcome 
these challenges with a suitable verification strategy, 
comprising several stages (described in separate 
sections of the article):

1.	Defining a configuration layer for RISC-V design 
and verification to check all possible variants

2.	Defining a golden predictor model based  
on an ISA simulator to decrease RTL-simulation 
overhead

3.	Utilizing emulation environment and FlexMem 
approach to effectively perform all test suites
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DEFINING A CONFIGURATION 
LAYER FOR RISC-V DESIGN  
AND VERIFICATION 
Considering the possible number of RISC-V core 
variants, it is not practical to manually implement and 
maintain all corresponding RTL representations and 
UVM environments. Automation is advisable, its type 
depending on the configuration variability of RISC-V 
cores. This article will present three options.

For demonstration purposes, we will use two different 
configurations of Codasip Berkelium processor:

a)  bk3-32IM-pd
b)  bk3-32IMC-pd 

“I”, “M”, and “C” stand for standard RISC-V instruction 
extensions as defined in Section I, “p” signifies 
enabled hardware parallel multiplier, and “d” 
enabled JTAG debugging. The difference between 
the presence and absence of the multiplication 
and division extension (“M”) in the Bk processor 
configuration practically only consists in the number 
of supported instructions. From the RTL and UVM 
point of view, this means that the existing RTL 
modules are longer, and the instruction decoder is 
more complicated. However, when the compressed 
instructions extension (“C”) is enabled, many new 
logic blocks are added to the RTL together with a 
new dedicated instructions decoder. This requires 
compiling additional RTL files that will describe these 
new logic blocks. From the UVM point of view, a new 
UVM agent for the compressed instructions decoder 
needs to be compiled and properly connected to the 
rest of the UVM environment.

1. The first option 
is to place the 
configuration 
layer at the 
beginning of the 
automation flow. 
Codasip does so 
by inserting the 
configuration 
string into the 
high-level CodAL 
description; see 

an example of a GUI configuration entry in Codasip 
Studio (the processor development environment) in 
Fig. 2. As you can see, the configuration text string 
consists of three parts divided by dashes. The first 
part specifies the name of the processor and the 
number of pipeline stages. The second part contains 
the used ISA extensions, and the last part specifies 
optional hardware extensions.

a. bk3-32IM-pd: When considering bk3-32IM-pd 
configuration string in Codasip Studio (Fig. 2), the 
defined processor model will have three pipeline 
stages and 32-bit word-width support. It will con- 
tain base integer instructions (“I”), instructions for 
multiplication and division (“M”), and it will have two 
hardware extensions – parallel multiplier (“p”) and 
JTAG debug interface (“d”). Other settings, such as 
memory size or caches enabled, can be found in the 
options table. Once the configuration is complete, it 
is possible to automatically generate RTL and UVM for 
this specific configuration with a single click.

 

Figure 1: Codasip's Flow of Generating SDK, RTL, Reference Models,  
and UVM Verification Environment.

Figure 2: bk3-32IM-pd Configuration  
in Codasip Studio.
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b. bk3-32IMC-pd: When using the configuration 
layer in Codasip Studio, no overhead is created by 
enabling the compressed instructions extension 
(“C”) in the bk3-32IMC-pd configuration (Fig. 3). 
The only action needed is rebuilding of the RTL and 
UVM environments so that they reflect the change in 
configuration.

2. The second option, suitable for manually written 
RTLs and verification environments, is to implement 
RTL and UVM that can be configured by ifdef 
constructs and related scripts. With this method, only 
one RTL and one verification environment for multiple 
RISC-V core variants are needed.

a. bk3-32IM-pd: To compile the source files, we use 
the compiler define options that are common for 
RTL and UVM, as seen in Fig. 4. Code snippets in 
Example 1 show that the configurable extensions 
are enclosed in their specific define parts. For 
example, “M” instructions are enclosed in `ifdef	
EXTENSION_M in the decoder.svh file. Only when this 
file is compiled with +define+EXTENSION_M, the “M” 
instructions will be recognized by the decoder. The 
same applies to the part of the example related to 
coverage. Thus, the principle of this method allows for 

configuring the UVM environment during compilation 
before each individual verification run. Furthermore, 
it makes for easier extending of the UVM environment 
with new ISA or hardware extensions.

Example 1: Code snippets with ifdef parts  
for bk3-32IM-pd configuration:

Figure 4: Compilation of All Files with Defines

Figure 3: bk3-32IMC-pd Configuration  
in Codasip Studio

/* Decoder description
 * file: codix_berkelium_ca_core_dec_t_decoder.svh
 */

// enumeration code for every decoded instruction 
typedef enum {
     add_, 
     and_,
     ...
     } m_instruction;

// “M” instructions
`ifdef EXTENSION_M
typedef enum 
     { mul_, 
     mulh_,
     ...
     } m_instruction_ext_m;
`endif

/* UVM Instructions decoder coverage collection
 * file: decoder_coverage.sv
 */

// Covergroup definition
covergroup FunctionalCoverage( string inst );

     cvp_instructions : coverpoint m_transaction_h.m_instruction { 
          illegal_bins unknown_instruction = {UNKNOWN};
         option.comment = "Coverpoint for decoded instructions. 
                                                Unknown instruction is considered  
                                                as illegal.";
     }

     `ifdef EXTENSION_M
     cvp_instructions_ext_m : coverpoint m_transaction_h.m_ 
          instruction_ext_m { illegal_bins unknown_instruction = 
          {UNKNOWN};
          option.comment = "Cover-point for decoded instructions  
                                                 for M extension. Unknown instruction  
                                                 is considered as illegal.";
     }
     `endif
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b. bk3-32IMC-pd: When adding the “C” extension, 
it is vital to ensure that an additional agent for the 
compressed instructions decoder will be compiled 
and connected. As shown in Example 2, `ifdef 
EXTENSION_C allows compiling the agent package 
which contains all agent files for compressed 
instructions decoder in compile.tcl file, binding the 
agent to the RTL signals of the processor in dut.sv  
file and registering it into the UVM configuration 
database in the UVM environment env.sv file.

 Example 2: Code snippets with ifdef parts for  
bk3-32IMC-pd configuration:

 

3. The third option is to use the standard means 
of UVM for configuration (uvm_config_db, see [6]). 
This option is similar to using ifdef (second option 
presented in this article), but it is limited to the UVM 
environment.

a. bk3-32IM-pd: As indicated by the code snippet in 
Example 3, enabling of the “M” instruction extension 
is reflected by the extension_M parameter which 

/* Environment registration to UVM configuration database
 * file: codix_berkelium_ca_env.svh
 */

// main sub-components used to collect instruction coverage 
codix_berkelium_ca_core_dec_t_agent m_codix_berkelium_
ca_core_dec_t_agent_dut_h;

`ifdef EXTENSION_C 
codix_berkelium_ca_core_decompressor_16b32b_t_agent 
m_codix_berkelium_ca_core_decompressor_16b32b_t_
agent_dut_h;
`endif

uvm_config_db #( codix_berkelium_ca_core_dec_t_agent_ 
config )::set( this,  
     "m_codix_berkelium_ca_core_dec_t_agent_dut_h*", 
     "codix_berkelium_ca_core_dec_t_agent_config", 
        m_cfg_h.m_codix_berkelium_ca_core_dec_t_agent_ 
        config_dut_h );

m_codix_berkelium_ca_core_dec_t_agent_dut_h =  
codix_berkelium_ca_core_dec_t_agent::type_id::create(  
"m_codix_berkelium_ca_core_dec_t_agent_dut_h", this );

`ifdef EXTENSION_C
uvm_config_db #( codix_berkelium_ca_core_
decompressor_16b32b_t_agent_config
)::set( this,
     "m_codix_berkelium_ca_core_decompressor_16b32b_t_ 
       agent_dut_h*",  
     "codix_berkelium_ca_core_decompressor_16b32b_t_ 
       agent_config",
     m_cfg_h.m_codix_berkelium_ca_core  decompressor_ 
     16b32b_t_agent_config_dut_h );

m_codix_berkelium_ca_core_decompressor_16b32b_t_
agent_dut_h = 
codix_berkelium_ca_core_decompressor_16b32b_t_
agent::type_id::create( 
"m_codix_berkelium_ca_core_decompressor_16b32b_t_
agent_dut_h", this );
`endif

/* Compile script
 *	 file: compile.tcl
 */

# UVM packages, interfaces and probes compilation 
compile_fve_source ${LIBRARY} [list \
...
     [file join agents codix_berkelium_ca_core_dec_t_agent 
sv_codix_berkelium_ca_core_dec_t_agent_pkg.sv] \

     # Compilation of compressed instructions decoder
     `ifdef EXTENSION_C
     [file join agents codix_berkelium_ca_core_ 
     decompressor_16b32b_t_agent 
sv_codix_berkelium_ca_core_decompressor_16b32b_t_
agent_pkg.sv] \
  `endif

/* Interconnection of probes and RTL modules
 * file: dut.sv
 */

bind HDL_DUT_U.codix_berkelium.core.dec 
icodix_berkelium_ca_core_dec_t_probe probe(
     .ACT(ACT),
     .codasip_param_0(codasip_param_0)
);
// binding of compressed instructions decoder
`ifdef EXTENSION_C
bind HDL_DUT_U.codix_berkelium.core.decompressor_16b32b 
icodix_berkelium_ca_core_decompressor_16b32b_t_probe 
probe(
     .ACT(ACT),
     .codasip_param_0(codasip_param_0)
);
`endif
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is saved into the UVM configuration database. It is 
then possible to obtain its value by calling the get 
function from a specific part of the UVM environment 
(the coverage file, for example), and then use it for 
creating new objects.

Example 3: Code snippet with uvm_config_db 
example for bk3-32IM-pd configuration:

b. bk3-32IMC-pd: When we applied the uvm_config_
db procedure to the configuration with “C” extension 
enabled, we encountered difficulties with connecting 
the additional agent and compiling the source files. 
That tells us that this method is suitable for ISA or 
hardware extensions that extend the functions of the 
processor without additional logic files that need to 
be compiled and connected.

For the comparison of all above-mentioned 
configuration methods, we summarized the 
main advantages and disadvantages in Table 1, 
"Advantages and Disadvantages of the  
Configuration Methods"
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DEFINING A GOLDEN PREDICTOR 
MODEL BASED ON AN  
ISA SIMULATOR 
An ISA simulator, or an instruction simulator, is used 
to execute the instruction stream. High performance 
is achieved by omitting micro-architectural 
implementation details. The simulator is usually 
implemented in C/C++/SystemC, and represents the 
reference functionality [7].

Codasip generates an ISA simulator from the high-
level instruction-accurate CodAL model as part of 
their automation flow. The ISA simulator is also used 
as a golden predictor model in UVM verification, 
meaning that the RTL processor model (DUV) 
generated from the high-level cycle-accurate CodAL 
model is verified against it. There are some obstacles 
to this approach, such as the asynchronous nature of 
the C++ ISA model (RTL is cycle-accurate), resolved 
by memory loaders that can load a program to the 
program memory consistently in RTL and C++ – after 
that, both are running on their own speed. Result 
comparison is handled by buffering the outputs of 
the faster component: when data is present in both 

/* Decoder agent configuration
 *  file: codix_berkelium_ca_core_dec_t_agent_config.svh
 */

// uvm_config_db configuration and set 
function void set_decoder_config_params();
     //set configuration info 
     decoder = new();

     decoder.extension_M = 1;
     ...
     uvm_config_db #(decoder_config)::set( this, "*" , 
     " decoder_config" , decoder ); 
endfunction

/* Decoder agent coverage
 *  file: codix_berkelium_ca_core_dec_t_coverage.svh
 */

// Decoder uvm_config_db get and use example 
decoder_config dec_config;
if( !uvm_config_db #( decoder_config )::get( this , "" , "decoder_
config" , dec_config ) ) begin
          `uvm_error(...)
end
...
cvp_instructions : coverpoint m_transaction_h.m_
instruction{…}
if( m_config.extension_M ) begin
     cvp_instructions_ext_m : coverpoint m_transaction_ 
     h.m_instruction_ext_m {…}
end

Pros Cons

Configuration set at 
higher abstraction 
level and RTL +  
UVM are generated

Easy setting 
of desired 
configuration, 
better readability of 
generated source 
files, and very fast 

The generated 
RTL + UVM are 
dedicated just 
to one processor 
configuration

Ifdefs for manually 
written RTL and  
UVM files

Support of 
multiple processor 
configurations 

Worse readability of 
code in source files

uvm_config_db  
for manually  
written UVM files

Support of 
multiple processor 
configurations in 
UVM source files

Worse readability 
of code in source 
files. Limited only 
to UVM 
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the golden predictor model FIFO and the DUV  
FIFO in Scoreboard, comparison is executed.

In the Codasip automation flow, assembling the 
UVM verification environment including the golden 
predictor model is much faster than in the standard 
flow, when all components are written manually.  
Time savings on the verification work are counted  
in man-months. 

UTILIZING EMULATION 
ENVIRONMENT AND FLEXMEM 
APPROACH TO EFFECTIVELY 
PERFORM TESTS  
Getting a viable golden predictor model is, however, 
only the first step. The second important criterion 
is simulation runtime. Flexibility of the RISC-V ISA 
allows for implementing tens of viable processor 
RISC-V micro-architectures. For example, at Codasip 
we are currently working with 48 variants of RISC-V. 
Considering that each of these micro-architecture is 
verified by at least 10,000 programs of around 500 
instructions (C-programs, benchmarks, randomly 
generated assembler programs), the verification 
runtime is enormous. To handle the effort, we di- 
vided the verification runtime into phases. In the first 
phase, we run suitable program representatives in 
RTL simulation, benefiting from very good debugging 
capabilities of the simulator. In the second phase, 
after debugging, we run the rest of the programs 
(mainly random ones) in the emulation environment.

The main drawback of RTL simulation is the inability 
to perform tasks in parallel. A good solution is to 
use emulation and exploit inherent parallelism 
in real hardware environment. Many papers and 
books have already been published that present the 
possible runtime improvements, for example [8]; our 
goal in this article is to show how verification of the 
RISC-V processors in particular can benefit from the 
emulation environment.

Our path of porting quite complex UVM environment 
for Berkelium processors to the Veloce® emulator [9] 
was not straightforward; based on our experience, we 
defined the following recommendations.

1. We started by comparing pure simulation and 
pure emulation environment runtimes. This means 
that we measured time of loading a specific program 
to the program part of the memory and the runtime 
of evaluating this program on the RISC-V Berkelium 
processor in UVM in Questa® RTL simulator, and 
the runtime of evaluating the same program on the 
Berkelium processor located on the emulator. In 
this case, we used a very simple emulator top-level 
module which instantiates the Berkelium processor. 
At the beginning, the program is loaded, and by 
deactivating the processor’s RESET signal it starts 
processing the program. A simple comparison of 
this type clearly indicates the maximum emulation 
performance for a specific DUV, as no software 
counterparts are slowing it down. In addition, it is 
also possible to estimate the benefits of using the 
emulator for a specific project. For example, we 
estimated that we can achieve at least 100 times 
verification acceleration when using the emulator.

2. As a second step, we recommend creating two 
top-levels: the emulator top-level module and the 
testbench top-level module. The emulator top-
level module instantiates the Berkelium processor, 
and the testbench top-level module contains a 
simple SystemVerilog class with two pipes to start 
processing programs and detect the end (it also 
initiates comparison of the content of registers to 
the reference content, which is for now done by a 
simple diff, so no golden predictor model is used 
in this phase). This approach makes it possible to 
run more programs on the processor and detect 
first bottlenecks. For example, we found out that 
processing the programs is very fast, but loading new 
programs is ineffective and decreases the emulation 
performance 25 times. To eliminate this problem, 
we used FlexMem blocks later in the process, as 
described in the next section of this article.

3. Finally, it is recommended to connect all UVM 
objects you intend to use into the testbench top-
level module, as they usually add some additional 
bottlenecks. We connected SystemVerilog programs 
loader, Codasip C++ ISA simulator as the reference 
model, one active UVM agent to drive processor’s 
input ports and read the decoded instructions 
(important for measuring instruction coverage and 
instruction sequences coverage), and passive UVM 
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agents for reading the transactions on buses, content 
of architectural registers, and content of memory, 
as these are compared to the reference results 
originating from the reference model. The emulation 
performance decreased so much that we started 
with profiling in Questa® as well as in the emulator. 
The result was that FlexMem blocks are very effective 
for loading programs from software to the emulator, 
however, we had to implement so-called “transactors” 
[x] for driving processor’s input ports from the active 
UVM agent, for monitoring decoded instructions 
from the processor, and for detecting the end of the 
program. We also realized that having the golden 
predictor model and Scoreboard comparison as part 
of the software testbench is not effective, as moving 
the content of transactions, registers and memories 
between the emulation top-level and the testbench 
top-level negatively impacts the performance. Thus 
we decided to locate the predictor outside of the test-
bench top-level and to leave it up to the emulation 
top-level to trigger the results comparison by the diff 
tool when the end of the program is detected. This 
means that the golden predictor model is running in 
parallel to the emulation, and we used dumping of 
DUV as well as reference data resources from both 
the golden predictor model and from the processor 
located in the emulator. For illustration of the result- 
ant environment, see Fig. 5, below.

We achieved the results shown in Table 2 below,  
"Emulation Performance Results", by employing the 
three mentioned steps. The current version achieves 
25.6x acceleration, but we are working on further 
optimizations including data aggregation on the 
testbench and on the emulation side, and measuring 
instruction coverage on the emulator directly.

 

Figure 5: Codasip UVM Ported to the Veloce® Emulator

Average runtime 
for 1 program 

in seconds (~100 
000 instructions)

Acceleration 
achieved

Pure simulation-
based verification 
vs. pure emula- 
tion-based 
verification

128 (simulation) 
1.28 (emulation)	

100 ×

Emulation-based 
verification with 
simple test-bench 
and pipes

32 4 ×

Emulation-based 
verification with 
UVM, FlexMem 
and external ISA 
simulator

20 25.6x 
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SUMMARY 
This article covered three topics that result from the 
flexibility of RISC-V IP cores. The first topic described 
usage of the configuration layer, and was divided 
into three sub-parts. The first part introduced the 
automation flow used in the processor development 
environment called Codasip Studio. This flow 
enables the user to simply input desired supported 
configuration, and the Studio automatically generates 
all the tools needed for verification and application 
development.

The second part explained the usage of defines in 
RTL and UVM files. This part showed that the user 
can have multiple configurations implemented in 
one package of source files. This is possible thanks to 
compiler defines allowing to mark parts of the code 
that are specific to individual processor extensions.

The third part elaborated on the procedure of using 
a UVM configuration database. The advantage of 
this approach is the integrated configuration in UVM 
itself. As it is restricted to UVM files, RTL needs to only 
include files for one configuration at a time.

We transformed a pure simulation-based UVM 
environment into an emulation environment 
employing the best practices, and measured the 
acceleration results. In cooperation with Mentor, 
we identified parts of the processor that required 
specific treatment to exploit the full emulation 
performance. Excluding the predictor model from 
UVM, implementing transactors, and utilizing diff 
comparison outside the UVM allowed us to remove 
a significant part of the DPI layer and decrease the 
burden of data transfers between software and the 
emulation environment. Also, utilizing FlexMem 
approach when loading programs to the program 
memory proved to be less time-consuming than  
using pipes (readmemh and writememh functions) 
directly with emulator memory.
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