
53

RISC-V is a new ISA (Instruction Set Architecture)
that introduces high level of flexibility into processor
architecture design, and enables processor
implementations tailored for applications in a variety
of domains, from embedded systems, IoT, and
high-end mobile phones to warehouse-scale cloud
computers. The downside of this extent of flexibility
is the verification effort that must be devoted to all
variants of the RISC-V cores. In this article, Codasip
and Mentor aim to describe their methodology of
effective verification of RISC-V processors, based on
a combination of standard techniques, such as UVM
and emulation, and new concepts that focus on the
specifics of the RISC-V verification, such as configura-
tion layer, golden predictor model, and FlexMem
approach.

INTRODUCTION
RISC-V is a free-to-use and open ISA developed at
the University of California, Berkeley, now officially
supported by the RISC-V Foundation [1][2]. It was
originally designed for research and education, but
it is currently being adopted by many commercial
implementations similar to ARM cores. The flexibility
is reflected in many ISA extensions. In addition to
basic Integer (“I”/”E”) ISA, many instruction extensions
are supported, including multiplication and division
extension (“M”), compressed instructions extension
(“C”), atomic operations extension (“A”), floating-point
extension (“F”), floating-point with double-precision
(“D”), floating-point with quad-precision (“Q”), and
others. By their combination, more than 100 viable
ISAs can be created.

Codasip is a company that delivers RISC-V IP cores,
internally named Codix Berkelium (Bk). In contrast
to the standard design flow, as defined for example

in [3][4], the design flow utilized by Codasip is
highly automated, see Fig. 1. Codasip describes
processors at a higher abstraction level using an
architecture description language called CodAL.
Each processor is described by two CodAL models,
the instruction-accurate (IA) model, and the cycle-
accurate (CA) model. The IA model describes the
syntax and semantics of the instructions and their
functional behavior without any micro-architectural
details. To complement, the CA model describes
micro-architectural details such as pipelines,
decoding, timing, etc. From these two CodAL
models, Codasip tools can automatically generate
SDK tools (assembler, linker, C-compiler, simulators,
profilers, debuggers) together with RTL and UVM
verification environments, as described in [5]. In UVM,
the IA model is used as a golden predictor model,
and the RTL generated from the CA model is used
as the Design Under Test (DUT). Such high level of
automation allows for very fast exploration of the
design space, producing a unique processor IP with
all the software tools in minutes.

This article aims to demonstrate that the flexibility of
RISC-V ISA presents benefits as well as challenges,
namely in verification. We will show how to overcome
these challenges with a suitable verification strategy,
comprising several stages (described in separate
sections of the article):

1.	Defining a configuration layer for RISC-V design
and verification to check all possible variants

2.	Defining a golden predictor model based
on an ISA simulator to decrease RTL-simulation
overhead

3.	Utilizing emulation environment and FlexMem
approach to effectively perform all test suites

UVM-based Verification of a RISC-V
Processor Core Using a Golden Predictor
Model and a Configuration Layer
by Marcela Zachariášová and Luboš Moravec — Codasip Ltd., John Stickley and Shakeel Jeeawoody — Mentor, A Siemens Business

54

DEFINING A CONFIGURATION
LAYER FOR RISC-V DESIGN
AND VERIFICATION
Considering the possible number of RISC-V core
variants, it is not practical to manually implement and
maintain all corresponding RTL representations and
UVM environments. Automation is advisable, its type
depending on the configuration variability of RISC-V
cores. This article will present three options.

For demonstration purposes, we will use two different
configurations of Codasip Berkelium processor:

a) bk3-32IM-pd
b) bk3-32IMC-pd

“I”, “M”, and “C” stand for standard RISC-V instruction
extensions as defined in Section I, “p” signifies
enabled hardware parallel multiplier, and “d”
enabled JTAG debugging. The difference between
the presence and absence of the multiplication
and division extension (“M”) in the Bk processor
configuration practically only consists in the number
of supported instructions. From the RTL and UVM
point of view, this means that the existing RTL
modules are longer, and the instruction decoder is
more complicated. However, when the compressed
instructions extension (“C”) is enabled, many new
logic blocks are added to the RTL together with a
new dedicated instructions decoder. This requires
compiling additional RTL files that will describe these
new logic blocks. From the UVM point of view, a new
UVM agent for the compressed instructions decoder
needs to be compiled and properly connected to the
rest of the UVM environment.

1. The first option
is to place the
configuration
layer at the
beginning of the
automation flow.
Codasip does so
by inserting the
configuration
string into the
high-level CodAL
description; see

an example of a GUI configuration entry in Codasip
Studio (the processor development environment) in
Fig. 2. As you can see, the configuration text string
consists of three parts divided by dashes. The first
part specifies the name of the processor and the
number of pipeline stages. The second part contains
the used ISA extensions, and the last part specifies
optional hardware extensions.

a. bk3-32IM-pd: When considering bk3-32IM-pd
configuration string in Codasip Studio (Fig. 2), the
defined processor model will have three pipeline
stages and 32-bit word-width support. It will con-
tain base integer instructions (“I”), instructions for
multiplication and division (“M”), and it will have two
hardware extensions – parallel multiplier (“p”) and
JTAG debug interface (“d”). Other settings, such as
memory size or caches enabled, can be found in the
options table. Once the configuration is complete, it
is possible to automatically generate RTL and UVM for
this specific configuration with a single click.

Figure 1: Codasip's Flow of Generating SDK, RTL, Reference Models,
and UVM Verification Environment.

Figure 2: bk3-32IM-pd Configuration
in Codasip Studio.

55

b. bk3-32IMC-pd: When using the configuration
layer in Codasip Studio, no overhead is created by
enabling the compressed instructions extension
(“C”) in the bk3-32IMC-pd configuration (Fig. 3).
The only action needed is rebuilding of the RTL and
UVM environments so that they reflect the change in
configuration.

2. The second option, suitable for manually written
RTLs and verification environments, is to implement
RTL and UVM that can be configured by ifdef
constructs and related scripts. With this method, only
one RTL and one verification environment for multiple
RISC-V core variants are needed.

a. bk3-32IM-pd: To compile the source files, we use
the compiler define options that are common for
RTL and UVM, as seen in Fig. 4. Code snippets in
Example 1 show that the configurable extensions
are enclosed in their specific define parts. For
example, “M” instructions are enclosed in `ifdef	
EXTENSION_M in the decoder.svh file. Only when this
file is compiled with +define+EXTENSION_M, the “M”
instructions will be recognized by the decoder. The
same applies to the part of the example related to
coverage. Thus, the principle of this method allows for

configuring the UVM environment during compilation
before each individual verification run. Furthermore,
it makes for easier extending of the UVM environment
with new ISA or hardware extensions.

Example 1: Code snippets with ifdef parts
for bk3-32IM-pd configuration:

Figure 4: Compilation of All Files with Defines

Figure 3: bk3-32IMC-pd Configuration
in Codasip Studio

/* Decoder description
 * file: codix_berkelium_ca_core_dec_t_decoder.svh
 */

// enumeration code for every decoded instruction
typedef enum {
 add_,
 and_,
 ...
 } m_instruction;

// “M” instructions
`ifdef EXTENSION_M
typedef enum
 { mul_,
 mulh_,
 ...
 } m_instruction_ext_m;
`endif

/* UVM Instructions decoder coverage collection
 * file: decoder_coverage.sv
 */

// Covergroup definition
covergroup FunctionalCoverage(string inst);

 cvp_instructions : coverpoint m_transaction_h.m_instruction {
 illegal_bins unknown_instruction = {UNKNOWN};
 option.comment = "Coverpoint for decoded instructions.
 Unknown instruction is considered
 as illegal.";
 }

 `ifdef EXTENSION_M
 cvp_instructions_ext_m : coverpoint m_transaction_h.m_
 instruction_ext_m { illegal_bins unknown_instruction =
 {UNKNOWN};
 option.comment = "Cover-point for decoded instructions
 for M extension. Unknown instruction
 is considered as illegal.";
 }
 `endif

56

b. bk3-32IMC-pd: When adding the “C” extension,
it is vital to ensure that an additional agent for the
compressed instructions decoder will be compiled
and connected. As shown in Example 2, `ifdef
EXTENSION_C allows compiling the agent package
which contains all agent files for compressed
instructions decoder in compile.tcl file, binding the
agent to the RTL signals of the processor in dut.sv
file and registering it into the UVM configuration
database in the UVM environment env.sv file.

 Example 2: Code snippets with ifdef parts for
bk3-32IMC-pd configuration:

3. The third option is to use the standard means
of UVM for configuration (uvm_config_db, see [6]).
This option is similar to using ifdef (second option
presented in this article), but it is limited to the UVM
environment.

a. bk3-32IM-pd: As indicated by the code snippet in
Example 3, enabling of the “M” instruction extension
is reflected by the extension_M parameter which

/* Environment registration to UVM configuration database
 * file: codix_berkelium_ca_env.svh
 */

// main sub-components used to collect instruction coverage
codix_berkelium_ca_core_dec_t_agent m_codix_berkelium_
ca_core_dec_t_agent_dut_h;

`ifdef EXTENSION_C
codix_berkelium_ca_core_decompressor_16b32b_t_agent
m_codix_berkelium_ca_core_decompressor_16b32b_t_
agent_dut_h;
`endif

uvm_config_db #(codix_berkelium_ca_core_dec_t_agent_
config)::set(this,
 "m_codix_berkelium_ca_core_dec_t_agent_dut_h*",
 "codix_berkelium_ca_core_dec_t_agent_config",
 m_cfg_h.m_codix_berkelium_ca_core_dec_t_agent_
 config_dut_h);

m_codix_berkelium_ca_core_dec_t_agent_dut_h =
codix_berkelium_ca_core_dec_t_agent::type_id::create(
"m_codix_berkelium_ca_core_dec_t_agent_dut_h", this);

`ifdef EXTENSION_C
uvm_config_db #(codix_berkelium_ca_core_
decompressor_16b32b_t_agent_config
)::set(this,
 "m_codix_berkelium_ca_core_decompressor_16b32b_t_
 agent_dut_h*",
 "codix_berkelium_ca_core_decompressor_16b32b_t_
 agent_config",
 m_cfg_h.m_codix_berkelium_ca_core decompressor_
 16b32b_t_agent_config_dut_h);

m_codix_berkelium_ca_core_decompressor_16b32b_t_
agent_dut_h =
codix_berkelium_ca_core_decompressor_16b32b_t_
agent::type_id::create(
"m_codix_berkelium_ca_core_decompressor_16b32b_t_
agent_dut_h", this);
`endif

/* Compile script
 *	 file: compile.tcl
 */

UVM packages, interfaces and probes compilation
compile_fve_source ${LIBRARY} [list \
...
 [file join agents codix_berkelium_ca_core_dec_t_agent
sv_codix_berkelium_ca_core_dec_t_agent_pkg.sv] \

 # Compilation of compressed instructions decoder
 `ifdef EXTENSION_C
 [file join agents codix_berkelium_ca_core_
 decompressor_16b32b_t_agent
sv_codix_berkelium_ca_core_decompressor_16b32b_t_
agent_pkg.sv] \
 `endif

/* Interconnection of probes and RTL modules
 * file: dut.sv
 */

bind HDL_DUT_U.codix_berkelium.core.dec
icodix_berkelium_ca_core_dec_t_probe probe(
 .ACT(ACT),
 .codasip_param_0(codasip_param_0)
);
// binding of compressed instructions decoder
`ifdef EXTENSION_C
bind HDL_DUT_U.codix_berkelium.core.decompressor_16b32b
icodix_berkelium_ca_core_decompressor_16b32b_t_probe
probe(
 .ACT(ACT),
 .codasip_param_0(codasip_param_0)
);
`endif

57

is saved into the UVM configuration database. It is
then possible to obtain its value by calling the get
function from a specific part of the UVM environment
(the coverage file, for example), and then use it for
creating new objects.

Example 3: Code snippet with uvm_config_db
example for bk3-32IM-pd configuration:

b. bk3-32IMC-pd: When we applied the uvm_config_
db procedure to the configuration with “C” extension
enabled, we encountered difficulties with connecting
the additional agent and compiling the source files.
That tells us that this method is suitable for ISA or
hardware extensions that extend the functions of the
processor without additional logic files that need to
be compiled and connected.

For the comparison of all above-mentioned
configuration methods, we summarized the
main advantages and disadvantages in Table 1,
"Advantages and Disadvantages of the
Configuration Methods"

	
	

	
	
.

	
	
.

	
	
.

DEFINING A GOLDEN PREDICTOR
MODEL BASED ON AN
ISA SIMULATOR
An ISA simulator, or an instruction simulator, is used
to execute the instruction stream. High performance
is achieved by omitting micro-architectural
implementation details. The simulator is usually
implemented in C/C++/SystemC, and represents the
reference functionality [7].

Codasip generates an ISA simulator from the high-
level instruction-accurate CodAL model as part of
their automation flow. The ISA simulator is also used
as a golden predictor model in UVM verification,
meaning that the RTL processor model (DUV)
generated from the high-level cycle-accurate CodAL
model is verified against it. There are some obstacles
to this approach, such as the asynchronous nature of
the C++ ISA model (RTL is cycle-accurate), resolved
by memory loaders that can load a program to the
program memory consistently in RTL and C++ – after
that, both are running on their own speed. Result
comparison is handled by buffering the outputs of
the faster component: when data is present in both

/* Decoder agent configuration
 * file: codix_berkelium_ca_core_dec_t_agent_config.svh
 */

// uvm_config_db configuration and set
function void set_decoder_config_params();
 //set configuration info
 decoder = new();

 decoder.extension_M = 1;
 ...
 uvm_config_db #(decoder_config)::set(this, "*" ,
 " decoder_config" , decoder);
endfunction

/* Decoder agent coverage
 * file: codix_berkelium_ca_core_dec_t_coverage.svh
 */

// Decoder uvm_config_db get and use example
decoder_config dec_config;
if(!uvm_config_db #(decoder_config)::get(this , "" , "decoder_
config" , dec_config)) begin
 `uvm_error(...)
end
...
cvp_instructions : coverpoint m_transaction_h.m_
instruction{…}
if(m_config.extension_M) begin
 cvp_instructions_ext_m : coverpoint m_transaction_
 h.m_instruction_ext_m {…}
end

Pros Cons

Configuration set at
higher abstraction
level and RTL +
UVM are generated

Easy setting
of desired
configuration,
better readability of
generated source
files, and very fast

The generated
RTL + UVM are
dedicated just
to one processor
configuration

Ifdefs for manually
written RTL and
UVM files

Support of
multiple processor
configurations

Worse readability of
code in source files

uvm_config_db
for manually
written UVM files

Support of
multiple processor
configurations in
UVM source files

Worse readability
of code in source
files. Limited only
to UVM

58

the golden predictor model FIFO and the DUV
FIFO in Scoreboard, comparison is executed.

In the Codasip automation flow, assembling the
UVM verification environment including the golden
predictor model is much faster than in the standard
flow, when all components are written manually.
Time savings on the verification work are counted
in man-months.

UTILIZING EMULATION
ENVIRONMENT AND FLEXMEM
APPROACH TO EFFECTIVELY
PERFORM TESTS
Getting a viable golden predictor model is, however,
only the first step. The second important criterion
is simulation runtime. Flexibility of the RISC-V ISA
allows for implementing tens of viable processor
RISC-V micro-architectures. For example, at Codasip
we are currently working with 48 variants of RISC-V.
Considering that each of these micro-architecture is
verified by at least 10,000 programs of around 500
instructions (C-programs, benchmarks, randomly
generated assembler programs), the verification
runtime is enormous. To handle the effort, we di-
vided the verification runtime into phases. In the first
phase, we run suitable program representatives in
RTL simulation, benefiting from very good debugging
capabilities of the simulator. In the second phase,
after debugging, we run the rest of the programs
(mainly random ones) in the emulation environment.

The main drawback of RTL simulation is the inability
to perform tasks in parallel. A good solution is to
use emulation and exploit inherent parallelism
in real hardware environment. Many papers and
books have already been published that present the
possible runtime improvements, for example [8]; our
goal in this article is to show how verification of the
RISC-V processors in particular can benefit from the
emulation environment.

Our path of porting quite complex UVM environment
for Berkelium processors to the Veloce® emulator [9]
was not straightforward; based on our experience, we
defined the following recommendations.

1. We started by comparing pure simulation and
pure emulation environment runtimes. This means
that we measured time of loading a specific program
to the program part of the memory and the runtime
of evaluating this program on the RISC-V Berkelium
processor in UVM in Questa® RTL simulator, and
the runtime of evaluating the same program on the
Berkelium processor located on the emulator. In
this case, we used a very simple emulator top-level
module which instantiates the Berkelium processor.
At the beginning, the program is loaded, and by
deactivating the processor’s RESET signal it starts
processing the program. A simple comparison of
this type clearly indicates the maximum emulation
performance for a specific DUV, as no software
counterparts are slowing it down. In addition, it is
also possible to estimate the benefits of using the
emulator for a specific project. For example, we
estimated that we can achieve at least 100 times
verification acceleration when using the emulator.

2. As a second step, we recommend creating two
top-levels: the emulator top-level module and the
testbench top-level module. The emulator top-
level module instantiates the Berkelium processor,
and the testbench top-level module contains a
simple SystemVerilog class with two pipes to start
processing programs and detect the end (it also
initiates comparison of the content of registers to
the reference content, which is for now done by a
simple diff, so no golden predictor model is used
in this phase). This approach makes it possible to
run more programs on the processor and detect
first bottlenecks. For example, we found out that
processing the programs is very fast, but loading new
programs is ineffective and decreases the emulation
performance 25 times. To eliminate this problem,
we used FlexMem blocks later in the process, as
described in the next section of this article.

3. Finally, it is recommended to connect all UVM
objects you intend to use into the testbench top-
level module, as they usually add some additional
bottlenecks. We connected SystemVerilog programs
loader, Codasip C++ ISA simulator as the reference
model, one active UVM agent to drive processor’s
input ports and read the decoded instructions
(important for measuring instruction coverage and
instruction sequences coverage), and passive UVM

59

agents for reading the transactions on buses, content
of architectural registers, and content of memory,
as these are compared to the reference results
originating from the reference model. The emulation
performance decreased so much that we started
with profiling in Questa® as well as in the emulator.
The result was that FlexMem blocks are very effective
for loading programs from software to the emulator,
however, we had to implement so-called “transactors”
[x] for driving processor’s input ports from the active
UVM agent, for monitoring decoded instructions
from the processor, and for detecting the end of the
program. We also realized that having the golden
predictor model and Scoreboard comparison as part
of the software testbench is not effective, as moving
the content of transactions, registers and memories
between the emulation top-level and the testbench
top-level negatively impacts the performance. Thus
we decided to locate the predictor outside of the test-
bench top-level and to leave it up to the emulation
top-level to trigger the results comparison by the diff
tool when the end of the program is detected. This
means that the golden predictor model is running in
parallel to the emulation, and we used dumping of
DUV as well as reference data resources from both
the golden predictor model and from the processor
located in the emulator. For illustration of the result-
ant environment, see Fig. 5, below.

We achieved the results shown in Table 2 below,
"Emulation Performance Results", by employing the
three mentioned steps. The current version achieves
25.6x acceleration, but we are working on further
optimizations including data aggregation on the
testbench and on the emulation side, and measuring
instruction coverage on the emulator directly.

Figure 5: Codasip UVM Ported to the Veloce® Emulator

Average runtime
for 1 program

in seconds (~100
000 instructions)

Acceleration
achieved

Pure simulation-
based verification
vs. pure emula-
tion-based
verification

128 (simulation)
1.28 (emulation)	

100 ×

Emulation-based
verification with
simple test-bench
and pipes

32 4 ×

Emulation-based
verification with
UVM, FlexMem
and external ISA
simulator

20 25.6x

60

SUMMARY
This article covered three topics that result from the
flexibility of RISC-V IP cores. The first topic described
usage of the configuration layer, and was divided
into three sub-parts. The first part introduced the
automation flow used in the processor development
environment called Codasip Studio. This flow
enables the user to simply input desired supported
configuration, and the Studio automatically generates
all the tools needed for verification and application
development.

The second part explained the usage of defines in
RTL and UVM files. This part showed that the user
can have multiple configurations implemented in
one package of source files. This is possible thanks to
compiler defines allowing to mark parts of the code
that are specific to individual processor extensions.

The third part elaborated on the procedure of using
a UVM configuration database. The advantage of
this approach is the integrated configuration in UVM
itself. As it is restricted to UVM files, RTL needs to only
include files for one configuration at a time.

We transformed a pure simulation-based UVM
environment into an emulation environment
employing the best practices, and measured the
acceleration results. In cooperation with Mentor,
we identified parts of the processor that required
specific treatment to exploit the full emulation
performance. Excluding the predictor model from
UVM, implementing transactors, and utilizing diff
comparison outside the UVM allowed us to remove
a significant part of the DPI layer and decrease the
burden of data transfers between software and the
emulation environment. Also, utilizing FlexMem
approach when loading programs to the program
memory proved to be less time-consuming than
using pipes (readmemh and writememh functions)
directly with emulator memory.

REFERENCES
[1] RISC-V Foundation. (2017, July) RISC-V
Specifications [Online]. Available: https://riscv.org/
specifications/

[2] David Patterson and John Hennessy. (2017)
Computer Organization and Design, RISC-V Edition,
Morgan Kaufmann.

[3] John Shen and Mikko Lipasti. (2013) Modern
Processor Design, Waveland Press.

[4] Jari Nurmi. (2007) Processor Design, Springer.

[5] Marcela Zachariášová, Zdeněk Přikryl, et al. (2013)
“Automated Functional Verification of ASIPs,” in
IFIP Advances in Information and Communication
Technology. Springer Verlag, pp. 128–138.

[6] Verification Academy. (2017, July) UVM
Configuration [Online]. Available: https://
verificationacademy.com/cookbook/configuration

[7] Rainer Leupers and Olivier Temam. (2010)
Processor and System-on-Chip Simulation, Springer

[8] Hans van der Schoot and Ahmed Yehia. (2015)
“UVM and Emulation: How to Get Your Ultimate
Testbench Acceleration Speed-up”, DVCon Europe
2015.

[9] Veloce emulator [Online]. Available: https://www.
mentor.com/products/fv/emulation-systems/

[10] Janick Bergeron, Alan Hunter, Andy Nightingale,
Eduard Černý. (2006) Verification Methodology
Manual for SystemVerilog. Springer.

Note: This paper was originally presented
at DVCon US 2018.

VERIFICATION
ACADEMY

The Most Comprehensive Resource for Verification Training

32 Video Courses Available Covering

• UVM Framework
• UVM Debug
• Portable Stimulus Basics
• SystemVerilog OOP
• Formal Verification
• Metrics in SoC Verification
• Verification Planning
• Introductory, Basic, and Advanced UVM
• Assertion-Based Verification
• FPGA Verification
• Testbench Acceleration
• PowerAware Verification
• Analog Mixed-Signal Verification

UVM and Coverage Online Methodology Cookbooks

Discussion Forum with more than 9625 topics

Verification Patterns Library

www.verificationacademy.com

32 Video Courses Available Covering

• UVM Framework
• UVM Debug
• Portable Stimulus Basics
• SystemVerilog OOP
• Formal Verification
• Metrics in SoC Verification
• Verification Planning
• Introductory, Basic, and Advanced UVM
• Assertion-Based Verification
• FPGA Verification
• Testbench Acceleration
• PowerAware Verification
• Analog Mixed-Signal Verification

UVM and Coverage Online Methodology Cookbooks

Discussion Forum with more than 9625 topics

Verification Patterns Library

www.verificationacademy.com

Editor:
Tom Fitzpatrick

Program Manager:
Rebecca Granquist

Mentor, A Siemens Business
Worldwide Headquarters

8005 SW Boeckman Rd.
Wilsonville, OR 97070-7777

Phone: 503-685-7000

To subscribe visit:
www.mentor.com/horizons

To view our blog visit:
VERIFICATIONHORIZONSBLOG.COM

Verification Horizons is a publication
of Mentor, A Siemens Business

©2018, All rights reserved.

