

SoC Verification Quantitative Closed-loop Management
Based on Automation and DPI-C Library

Yongqi Sang, Bin Liu, Rui Zhao, Yifei Zhang

Modem Hardware Group

Intel Inc

Xi’an, Shaanxi, China

www.intel.com

ABSTRACT

With modern SoC size growing exponentially, how to implement a high quality SoC level verification is
more challenging. There is no doubt that functional coverage is a key criterion for verification sign off,
but normally due to the different strategy with module level, it is not easy to evaluate the functional
coverage quantitatively on SoC level. This paper figured out a closed-loop management flow, with the
DPI-C interface it can implement the functional and assertion coverage on SoC level conveniently, and
with the HVP to map the verification objectives, test cases and coverage, it can get clear quantitative
coverage status. The automation tool is also implemented. The flow can reduce verifiers’ work load and
give the verification manager more objective quantitative indicators to evaluate the SoC level
verification quality.

key words：SoC level, coverage, verification, HVP, quantitative, evaluation, closed-loop, automation

http://www.intel.com/

SNUG 2019

Page 2
SoC Verification Quantitative Closed-loop Management

Based on Automation and DPI-C Library

Table of Contents
1. Introduction ... 3

2. Background .. 3

3. Solution .. 4

3.1 Hawkeye ... 5

3.1.1 Functional Coverage Utility... 5

3.1.2 SVA Coverage Utility .. 6

3.2 HVP.. 8

3.2.1 HVP Basis .. 8

3.2.2 HVP Template ... 9

3.2.3 Final Mapping Result Show ... 10

3.3 Toolkit Delivery ... 11

3.3.1 Requirement.. 11

3.3.2 Automation Script ... 11

3.3.3 Makefile and Others ... 12

4. Summary .. 12

5. References ... 12

Table of Figures
Figure 1. SoC verification quantitative closed-loop management flow .. 5
Figure 2. Functional coverage definition DPI-C APIs .. 6
Figure 3. Task implemented SVA example with pseudo code .. 7
Figure 4. HVP basic syntax example .. 8
Figure 5. HVP template update example .. 9
Figure 6. HVP map example in Verdi coverage ... 10
Figure 7. Toolkit delivery ... 11

Table of Tables
Table 1. DPI C layer mapping data types[4] ... 6

SNUG 2019

Page 3
SoC Verification Quantitative Closed-loop Management

Based on Automation and DPI-C Library

1. Introduction

With the rapid growth of chip scale, current SoC level verification itself is very complex and involves
collaboration between multiple modules, which is one of the difficulties that make verification quality
evaluation difficult. Another important reason is that due to hundreds of verifiers in the process of
multi-billion-door IC system verification, the different coding style of test code is difficult to
guarantee uniformity. Therefore, we have to further standardize various verification standards at
SoC level, including the standardization of verification platform[1], the standardization of test
instructions[1](no matter it is UVM or C test instruction set), the standardization of verification flow[2]
and the standardization of quantitatively evaluate verification quality, which will be mainly
described in this paper.

The main verification quality evaluation criteria include code coverage, functional coverage,
assertion coverage, register coverage, and defect growth curves, etc. Among them, the defect growth
curve can be recorded and visualized through the defect tracking tool[2]. The association between
various coverages, test cases and verification objectives can be achieved by verification management
tools. The verification planner and hierarchical verification plan(HVP) we are currently using plays
such an important role. The solution we proposed can insert various coverages at SoC level easily
and map those coverages result with verification objectives conveniently.

2. Background

As mentioned above, in traditional verification work, we mainly rely on criteria such as functional
coverage and code coverage to evaluate the quality of verification. Code coverage can be collected
automatically by the tools, and functional coverage need verifiers to perform verification plan
decomposition and functional coverage modeling (mostly implemented by SV), it is no problem at
module level, but when rise to large subsystem level and SoC level, the sharp increased recompilation
time results in this method no longer applicable in these high-level test bench structures. In previous
projects SoC level verification, actually we mainly relied on test cases pass rate to evaluate the quality
of verification, but this method is not perfect enough, it cannot accurately check whether the test case
really covers the verification objective. It is unreasonable to rely entirely on the test case review, this
introduces too much extra time and cannot perform quantitative evaluation very well. Moreover, the
module level verifiers often build the module level verification environment by themselves, and the
SoC level verification environment is normally by centralized maintainance, these non-uniform
standardized implementation will make our SoC level verification and review more difficultly.

In previous projects, we also used HVP to facilitate the management of verification objectives. The
code coverage is normally analyzed after concentrated merge, less analysis corresponding to a single
verification object. And on SoC level because there is no functional coverage and other coverage, the
result of SoC level HVP corresponding to the verification objective is only the test cases, which did
not fully exploit the potential of HVP. And for module level HVP editing, users have to manually fill
in each functional coverage group name, which is relatively inefficient.

Let us summarize the problems mentioned above, we have the following challenges in current SoC
level verification,

 Due to the cost of time, the insertion of SoC level functional coverage cannot follow the
module level method.

 Need more reasonable evaluation criteria to increase the real value of review work.

SNUG 2019

Page 4
SoC Verification Quantitative Closed-loop Management

Based on Automation and DPI-C Library

 Need supplement SoC level HVP content, to make better use of its features.
 Need automation method to reduce repetitive work.

In response to above problems, we firstly developed one in-house verification IP called Hawkeye,
which defined SoC level C test interface to meet both the compilation time demand and the SoC level
test format[3], we have further optimized and added some more useful features, which considering
the method of quantitatively evaluate verification quality. Secondly we also defined the HVP template,
which includes everything related to verification quantification, such as verification objectives, test
cases, functional coverage descriptions, assertion descriptions, and their mapping relations. And
finally we also developed one automation tool, it uses the HVP as input. Along with the corresponding
automation tool, we can automatically generate the functional and assertion coverage statements.
These statements can be directly embedded into SoC level test to achieve coverage collection and
ultimately mapping to verification objectives. So that the verification manager can focus on reviewing
the functional coverage modeling and final quantitative analysis of each verification objective in the
HVP.

3. Solution

As shown in Figure 1, our solution flow mainly includes the following steps,

1. The starting point is the HVP template, which defines several needed attributes for the
Hawkeye interface, these attributes content need user input to enable the coverage model
construction. These literal information is more easier to review at the verification beginning,
and it is the only information which need user to supplement.

2. Based on this updated HVP, the automation script can generate relevant coverage statements
and annotate the coverage groups to HVP metrics. These coverage statements can generate
coverage groups dynamically when running test cases through DPI-C interface, which is
implemented by Hawkeye.

3. With the generated statement in step 2, user can easily insert it into test cases, and run
needed test case or regression to get the coverage database.

4. Then users can visually check the coverage map results of each covergroup defined in the
HVP by Verdi/DVE coverage tool, in which the verification planner is natively integrated. And
user can update test case if there are gap, similar as module level verification.

We can see that the flow uses HVP as the main line, the user defined verification objectives related
criteria are in HVP, and the annotated results obtained from the test cases can also be quantitative
evaluated with it, thus forming a closed-loop management flow. And the verification manager can
focus on coverage modeling review and the final results review, verifiers can focus on coverage
modeling and test case construction, which allows for more efficient use of precious project time and
minimizes unnecessary redundancies of effort.

SNUG 2019

Page 5
SoC Verification Quantitative Closed-loop Management

Based on Automation and DPI-C Library

Figure 1. SoC verification quantitative closed-loop management flow

3.1 Hawkeye

Hawkeye is a full scale system monitor and evaluation solution[3], which include several sub-
components and can easily be integrated. We are only using its functional coverage utility for this
flow, and we also added the System Verilog Assertion(SVA) coverage modeling, which as a
supplement to the functional coverage, can meet more complex practical demands from users.

3.1.1 Functional Coverage Utility

The functional coverage utility implemented basic coverage point definition methods by SV and also
exported them as DPI-C APIs. C testers can employ those formal APIs to define coverage, and
Hawkeye would dynamically create covergroups, which will generate the same coverage data format
with module level functional coverage. Therefore, with the unified coverage APIs, it not only supplies
the uniform coverage interface for better readability and reuse, and also closes the coverage database
gap between module level and SoC level.

Since the information of final SV functional coverage modeling comes from the users’ input content
in the HVP, such as the coverage name, the signal under test, the clock, and the reset signal, etc., all of
them are given in the form of string (always includes hierarchy information as well), so both the C
and SV sides need receive the correct data type (as shown in Table 1). And in the SV side
implementation, we have to perform the data type conversion and the binding between string and
logic, so that the SV side can implement correctly when there are multiple modeling instance passed
in. These details are mainly implemented by the VCS system task $hdl_xmr and the SV data type
associative array. During the functions implementation procedure, it was also blocked by the
insufficiency of SV language that it could not support the dynamic sized vector selection, and
therefore, we have to copy quite a lot code for the methods to satisfy the possible different signal
vector size.

SNUG 2019

Page 6
SoC Verification Quantitative Closed-loop Management

Based on Automation and DPI-C Library

Table 1. DPI C layer mapping data types[4]

SystemVerilog type C type

byte char

shortint short int

int int

longint long long

real double

shortreal float

chandle void *

string const char *

bit unsigned char

logic/reg unsigned char

Figure 2 gives the defined coverage DPI-C APIs. Those APIs’ names imply they would be taken to
define single data coverage point, data range coverage point, data transition coverage point or cross
data coverage point. In general, the exported APIs would satisfy the most need on SoC level. At last,
SoC level functional coverage would be merged with module level coverage as a whole for functional
coverage measurement, so it requires users to put unique coverage names while calling the APIs.
Users can define the rules in advance, for instance, it is suggested to put the verification objective
name + sampled signal name + sampled value to make the covergroup name the one and only.

extern void add_single_coverage(const char* sample_e, int

sample_width, const char* obj, int obj_width, int binval, const char*

name, int edge_mode = 2, int condition_val = -1);

extern void add_range_coverage(const char* sample_e, int

sample_width, const char* obj, int obj_width, int binval1, int

binval2, const char* name, int edge_mode = 2, int condition_val=-1);

extern void add_transition_coverage(const char* sample_e, int

sample_width, const char* obj, int obj_width, int binval1, int

binval2, const char* name, int edge_mode = 2 , int condition_val= -

1);

extern void add_cross_coverage(const char* sample_e, int

sample_width, const char* obj1, int obj1_width, int binval1, const

char* obj2, int obj2_width, int binval2, const char* name, int

edge_mode = 2, int condition_val = -1);

Figure 2. Functional coverage definition DPI-C APIs

3.1.2 SVA Coverage Utility

The SVA coverage utility implementation is somewhat similar with the functional coverage utility.
We also have to implement the corresponding function to complete binding the users input string
information to the internal logic signal, and instantiate the corresponding assertion and coverage.

We initially considered directly referencing the OVL[5] and Intel's built-in SVA checker libraries as
these encapsulated SVA libraries are more friendly for users. But unfortunately, because the DPI-C
interface requires SV task or function implementation, and the SVA concurrent assertion cannot be

SNUG 2019

Page 7
SoC Verification Quantitative Closed-loop Management

Based on Automation and DPI-C Library

called directly in the task or function, so we can only rewrite this part of the logic. The automatic task
can perform the detection logic of most assertions[6], although this introduces us a lot of extra coding
and testing effort.

Figure 3 shows one example, to make it easier to understand the complex implementations are
replaced with pseudo code (uppercase). The forever monitor can get same effect as assertion. In the
check part, the if-else can be used to replace the SVA implication. Since we cannot call the native SVA
statement, so the corresponding assertion coverage cannot be seen, but we can dynamically create
the function covergroup in the rewritten task when the detection condition is satisfied, from final
coverage database it can also be used to observe whether these assertions are actually executed in
the test.

task automatic ASSERT_NAME(string sva_name, string sig, int width,

string clk, string rst, int clk_edge, int rst_polarity);

 bit has_cov = 1; //used for covergroup one time creation

 BIND string sig, clk, rst TO INTERNAL LOGIC SIG, CLK, RST

 fork //fork join_none for multiple calling

 forever @(POSEDGE OR NEGEDGE IS DEPEND ON INPUT clk_edge))

 begin

 if(RST DEASSERT VALUE IS DEPEND ON INPUT rst_polarity)

 begin //enable check when reset released

 if(width == 1) //sig is single bit

 SINGLE BIT SIG CHECK, PRINT ERROR WHEN VIOLATION

 else ////sig is vector

 begin

 for(int i=0; i<width; i++)

 VECTOR SIG BIT CHECK, PRINT ERROR WHEN VIOLATION

 end //enable coverage when assert active

 if(has_cov == 1)

 begin

 CREATE FUNCTION COVERGROUP NAMED sva_name

 ENABLE COVERGROUP SAMPLE

 has_cov = 0; //for each instance only create one cov

 end

 end

 end

 join_none //fork join_none for multiple calling

endtask
Figure 3. Task implemented SVA example with pseudo code

Due to time insufficient, we didn't rewrite all the library assertions (more than 100). Instead, we just
implemented some of the most common and most wanted assertions from users according to the
project requirements. These will continue to improve according to the feedback from the later
projects.

SNUG 2019

Page 8
SoC Verification Quantitative Closed-loop Management

Based on Automation and DPI-C Library

3.2 HVP

3.2.1 HVP Basis

HVP is a comprehensive model that allows user to hierarchically describe a verification plan[7]. As
figure 4 shows one example, it contains feature declarations, attribute/annotation declarations, goals
and metrics, etc. Attributes are named values specified in the plan, whereas metrics are named values
annotated from HVP data files. Metrics can be coverage information extracted from merged
simulation runs. We can use measure specifications to declare which metrics to annotate a feature
from the verification database.

#plan identifier

plan PLAN_NAME;

 #metric-declaration

 metric enum {PASSED, UNKNOWN, FAILED} test_status;

 aggregator = sum;

 goal = ((test_status.FAILED + test_status.UNKNOWN)==0);

 endmetric

 #attribute and annotation declaration

 attribute string prio = "";

 ……

 annotation string hky_cg_name = "";

 ……

 #feature declaration

 feature Function;

 #sub feature declaration

 feature VO_NAME1;

 owner = "user1";

 description = "……";

 #measure declaration

 measure test_status;

 source = "TESTCASE_PATH1/TESTCASE1";

 endmeasure

 feature COV_NAME1;

 hky_cg_name = "cov_name1";

 ……

 measure Group grp;

 source = "group instance: hky_pkg::cov_name1";

 endmeasure

 endfeature

 feature COV_NAME2;

 ……

 endfeature

 ……

 endfeature

 ……

 endfeature

 #subplan declaration

 subplan subplan1;

endplan
Figure 4. HVP basic syntax example

SNUG 2019

Page 9
SoC Verification Quantitative Closed-loop Management

Based on Automation and DPI-C Library

When HVP is loaded in Verdi/DVE coverate tool, it is shown as a static two dimentional table, the
definitions of attributes, annotations and metrics can be seen as its columns, the plan and feature
trees, which are the basic building blocks, can be seen as its rows.

3.2.2 HVP Template

As feature part is what user can edit through Verdi/DVE coverage GUI, so we defined such HVP
template, the verification objectives are defined as its root feature, the function/SVA coverage and
test cases status, etc. are its sub hierarchical feature or metrics measure. As the built-in metrics have
included assertion and functional coverage, etc., we can use it directly without modification. And then
following the Hawkeye DPI-C APIs interface parameters, we abstracted it and defined them as new
attributes/annotations, from users’ point of view, they only need supplement these attributes value
based on the functional coverage modeling intention.

As figure 5 shows, when users need add one new functional coverage in the template, they just need
add one new feature by click the ‘create a new feature’ button (shown in circle 1), then one new
feature with default name ‘Feature_x’ will be added (shown in circle 2), users can ignore the default
name because with the automation tool it will finally be annanoted by the value of attribute
‘hky_cg_name’, user need update the Hawkeye related parameters value in the right side list, where
all the Hawkeye needed parameters are shown. (shown in circle 3).

Figure 5. HVP template update example

SNUG 2019

Page 10
SoC Verification Quantitative Closed-loop Management

Based on Automation and DPI-C Library

As HVP is finally shown as a static two dimentional table, we cannot dynamically switch its display
like the excel pivot table, and the number of different Hawkeye interface function parameters are not
exactly the same, which introduces some inconvenience to our application. We have to define the
attributes according to the function with the most parameters. Users may only need a part of
parameters when using some functions, the extra parameters display may introduce a bit trouble to
the primary users. Although we have detail document to avoid such issues, it would be better to
dynamically gray out those items not required, maybe Synopsys can consider adding similar features
to future updates.

3.2.3 Final Mapping Result Show

Figure 6 shows the HVP mapping result example in Verdi coverage. After there added the
function/SVA coverage information and related metrics measure in the HVP (shown in circles), we
get a final version HVP. And after C tests with Hawkeye coverage definition run done, we get the
coverage database with those Hawkeye defined covergroup inside, they can be mapped intuitively.
We can see these coverage groups instantiated in the coverage list on the left, and the coverage can
be quantified from the middle HVP mapping results. It can be seen that the mapping relations
between verification objectives, test cases and coverages are clear. Based on these mapping relations,
we even can enable only some of the specific coverage related with specific test case. This may be
useful on SoC level, and it can be controlled in the coverage C test file by ‘ifdef’ easily.

Figure 6. HVP map example in Verdi coverage

SNUG 2019

Page 11
SoC Verification Quantitative Closed-loop Management

Based on Automation and DPI-C Library

3.3 Toolkit Delivery

3.3.1 Requirement

From above introduction, we can see there are a lot of repetitive work actually in this flow, such as
define the Hawkeye parameters in HVP, update the coverage feature name, add covergroup name in
the HVP measure (Figure 5 to Figure 6), write the C test, etc. These repetitive works are boring and
easy to mistake, so we developed the automation script to implement it. It can be automated because
all these info use same value defined in Hawkeye parameters, which from users’ original input. These
common information are the essencial of the automation.

And in the work of integrating Hawkeye into different modules, there are also some repetitive work.
It can be hiden for users who are not familiar with Hawkeye, So the automation tools also
implemented some test bench Hawkeye insertion and makefile update functions, etc.

So as shown in Figure 7, our final toolkit delivery includes the HVP template, the automation scripts,
and the Hawkeye integration needed SV files and makefiles.

Figure 7. Toolkit delivery

3.3.2 Automation Script

The automation tool is batch mode scripts developed by Python. As figure 7 shows, the input is the
HVP file with Hawkeye parameters which added by user, the output are,

 The final version HVP that updates the coverage feature name and metrics measure, etc.,
which can be used for final mapping directly.

 The C test files with Hawkeye function calling, these C test files can be compiled and run
through the DPI-C interface during simulation, whether it’s direct or SV/UVM testbench.

 The calling of native SVA (OVL and Intel's built-in SVA checker libraries), which we added
later. It’s more considering the demand from module level verifiers and design engineers, so

SNUG 2019

Page 12
SoC Verification Quantitative Closed-loop Management

Based on Automation and DPI-C Library

they can either embed the native SVA statements into RTL or bind with their test bench easily,
and can correspong to the verification objectives.

Therefore SoC level verifiers can focus on the verification objectives and coverage modeling and of
course the test case development (which shown in figure1 step 1 with green color), all other rest
works (which shown in figure1 step 2-4 with blue color) can be automated. The script also have the
necessary features such as HVP check to ensure that the entire closed-loop operation can be carried
out correctly.

3.3.3 Makefile and Others

Other deliveries include the Hawkeye complete SV packages and the Makefile which used to integrate
it. Users can integrate Hawkeye into their own test bench by merge the Makefile content to their
compilation environment. Since we have considered various common issues for users, the
integration is actually very easy.

4. Summary

In this paper we introduced a SoC level verification quantitative closed-loop management flow, let us
correspond the solution with the problems in the background section,

 We developed Hawkeye to implement SoC level functional and SVA coverage modeling
through DPI-C, it doesn’t need modify the test bench, just need a little compilation time that
is almost negligible.

 We defined HVP template and format, which unified the SoC level verification quality
evaluation criteria. With verification objectives verification managers can focus on the literal
checking of functional coverage modeling and final mapping result, both the load and
efficiency of review work are improved.

 We delivered toolkit with automated sript, which increased the verifiers’ efficiency and
reduced the errors possibility. Verifiers can focus on the coverage modeling literal
information and test case construction without worry about lots of low level redundant
coding. Obviously, this is also beneficial to the improvement of the entire project efficiency.

Of course, because we limit the coverage modeling only through Hawkeye inteface, we somewhat lost
flexibility of functional coverage contrast to module level. And it also brings a little extra learning cost
to the verifiers, but compare with our benefit, it is worthy.

The scheme in this pater has been proven to be usable, and will be used in the following big
project.Before the SNUG conference in June, we may supplement more practical applications into the
solution and summary if there are.

5. References

[1] Bin Liu, “Unified Verification Framework Automation and Test Standardization with UVM”, SNUG 2017
[2] Bin Liu, “A Walking Guide to SoC Verification: The panorama of Verification from System to UVM”,

Publishing House of Electronices Industry, 2018
[3] Bin Liu, “A Full-scale System Monitor and Evaluation Solution for SoC Verificaiton”, DVCon China, April

2018
[4] IEEE Std 1800TM-2017, IEEE Standard for SystemVerilog

SNUG 2019

Page 13
SoC Verification Quantitative Closed-loop Management

Based on Automation and DPI-C Library

[5] https://accellera.org/downloads/standards/ovl
[6] https://verificationacademy.com/verification-horizons/march-2018-volume-14-issue-1/sva-alternative-

for-complex-assertions
[7] $VCS_HOME/doc/UserGuide/pdf/v_planner.pdf

https://accellera.org/downloads/standards/ovl
https://verificationacademy.com/verification-horizons/march-2018-volume-14-issue-1/sva-alternative-for-complex-assertions
https://verificationacademy.com/verification-horizons/march-2018-volume-14-issue-1/sva-alternative-for-complex-assertions

	SoC Verification Quantitative Closed-loop Management Based on Automation and DPI-C Library
	1. Introduction
	2. Background
	3. Solution
	3.1 Hawkeye
	3.1.1 Functional Coverage Utility
	3.1.2 SVA Coverage Utility

	3.2 HVP
	3.2.1 HVP Basis
	3.2.2 HVP Template
	1.1.1
	3.2.3 Final Mapping Result Show

	3.3 Toolkit Delivery
	3.3.1 Requirement
	3.3.2 Automation Script
	3.3.3 Makefile and Others

	4. Summary
	5. References

