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ABSTRACT 

With modern SoC size growing exponentially, how to implement a high quality SoC level verification is 
more challenging. There is no doubt that functional coverage is a key criterion for verification sign off, 
but normally due to the different strategy with module level, it is not easy to evaluate the functional 
coverage quantitatively on SoC level. This paper figured out a closed-loop management flow, with the 
DPI-C interface it can implement the functional and assertion coverage on SoC level conveniently, and 
with the HVP to map the verification objectives, test cases and coverage, it can get clear quantitative 
coverage status. The automation tool is also implemented. The flow can reduce verifiers’ work load and 
give the verification manager more objective quantitative indicators to evaluate the SoC level 
verification quality. 
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1. Introduction 

With the rapid growth of chip scale, current SoC level verification itself is very complex and involves 
collaboration between multiple modules, which is one of the difficulties that make verification quality 
evaluation difficult. Another important reason is that due to hundreds of verifiers in the process of 
multi-billion-door IC system verification, the different coding style of test code is difficult to 
guarantee uniformity. Therefore, we have to further standardize various verification standards at 
SoC level, including the standardization of verification platform[1], the standardization of test 
instructions[1](no matter it is UVM or C test instruction set), the standardization of verification flow[2] 
and the standardization of quantitatively evaluate verification quality, which will be mainly 
described in this paper. 

The main verification quality evaluation criteria include code coverage, functional coverage, 
assertion coverage, register coverage, and defect growth curves, etc. Among them, the defect growth 
curve can be recorded and visualized through the defect tracking tool[2]. The association between 
various coverages, test cases and verification objectives can be achieved by verification management 
tools. The verification planner and hierarchical verification plan(HVP) we are currently using plays 
such an important role. The solution we proposed can insert various coverages at SoC level easily 
and map those coverages result with verification objectives conveniently. 

2. Background 

As mentioned above, in traditional verification work, we mainly rely on criteria such as functional 
coverage and code coverage to evaluate the quality of verification. Code coverage can be collected 
automatically by the tools, and functional coverage need verifiers to perform verification plan 
decomposition and functional coverage modeling (mostly implemented by SV), it is no problem at 
module level, but when rise to large subsystem level and SoC level, the sharp increased recompilation 
time results in this method no longer applicable in these high-level test bench structures. In previous 
projects SoC level verification, actually we mainly relied on test cases pass rate to evaluate the quality 
of verification, but this method is not perfect enough, it cannot accurately check whether the test case 
really covers the verification objective. It is unreasonable to rely entirely on the test case review, this 
introduces too much extra time and cannot perform quantitative evaluation very well. Moreover, the 
module level verifiers often build the module level verification environment by themselves, and the 
SoC level verification environment is normally by centralized maintainance, these non-uniform 
standardized implementation will make our SoC level verification and review more difficultly. 

In previous projects, we also used HVP to facilitate the management of verification objectives. The 
code coverage is normally analyzed after concentrated merge, less analysis corresponding to a single 
verification object. And on SoC level because there is no functional coverage and other coverage, the 
result of SoC level HVP corresponding to the verification objective is only the test cases, which did 
not fully exploit the potential of HVP. And for module level HVP editing, users have to  manually fill 
in each functional coverage group name, which is relatively inefficient. 

Let us summarize the problems mentioned above, we have the following challenges in current SoC 
level verification, 

 Due to the cost of time, the insertion of SoC level functional coverage cannot follow the 
module level method. 

 Need more reasonable evaluation criteria to increase the real value of review work. 



SNUG 2019 

 

Page 4 
SoC Verification Quantitative Closed-loop Management 

Based on Automation and DPI-C Library 

 Need supplement SoC level HVP content, to make better use of its features. 
 Need automation method to reduce repetitive work. 

In response to above problems, we firstly developed one in-house verification IP called Hawkeye, 
which defined SoC level C test interface to meet both the compilation time demand and the SoC level 
test format[3], we have further optimized and added some more useful features, which considering 
the method of quantitatively evaluate verification quality. Secondly we also defined the HVP template, 
which includes everything related to verification quantification, such as verification objectives, test 
cases, functional coverage descriptions, assertion descriptions, and their mapping relations. And 
finally we also developed one automation tool, it uses the HVP as input. Along with the corresponding 
automation tool, we can automatically generate the functional and assertion coverage statements. 
These statements can be directly embedded into SoC level test to achieve coverage collection and 
ultimately mapping to verification objectives. So that the verification manager can focus on reviewing 
the functional coverage modeling and final quantitative analysis of each verification objective in the 
HVP. 

3. Solution 

As shown in Figure 1, our solution flow mainly includes the following steps, 

1. The starting point is the HVP template, which defines several needed attributes for the 
Hawkeye interface, these attributes content need user input to enable the coverage model 
construction. These literal information is more easier to review at the verification beginning, 
and it is the only information which need user to supplement. 

2. Based on this updated HVP, the automation script can generate relevant coverage statements 
and annotate the coverage groups to HVP metrics. These coverage statements can generate 
coverage groups dynamically when running test cases through DPI-C interface, which is 
implemented by Hawkeye. 

3. With the generated statement in step 2, user can easily insert it into test cases, and run 
needed test case or regression to get the coverage database. 

4. Then users can visually check the coverage map results of each covergroup defined in the 
HVP by Verdi/DVE coverage tool, in which the verification planner is natively integrated. And 
user can update test case if there are gap, similar as module level verification. 

We can see that the flow uses HVP as the main line, the user defined verification objectives related 
criteria are in HVP, and the annotated results obtained from the test cases can also be quantitative 
evaluated with it, thus forming a closed-loop management flow. And the verification manager can 
focus on coverage modeling review and the final results review, verifiers can focus on coverage 
modeling and test case construction, which allows for more efficient use of precious project time and 
minimizes unnecessary redundancies of effort. 
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Figure 1. SoC verification quantitative closed-loop management flow 

3.1 Hawkeye 

Hawkeye is a full scale system monitor and evaluation solution[3], which include several sub-
components and can easily be integrated. We are only using its functional coverage utility for this 
flow, and we also added the System Verilog Assertion(SVA) coverage modeling, which as a 
supplement to the functional coverage, can meet more complex practical demands from users. 

3.1.1 Functional Coverage Utility 

The functional coverage utility implemented basic coverage point definition methods by SV and also 
exported them as DPI-C APIs. C testers can employ those formal APIs to define coverage, and 
Hawkeye would dynamically create covergroups, which will generate the same coverage data format 
with module level functional coverage. Therefore, with the unified coverage APIs, it not only supplies 
the uniform coverage interface for better readability and reuse, and also closes the coverage database 
gap between module level and SoC level. 

Since the information of final SV functional coverage modeling comes from the users’ input content 
in the HVP, such as the coverage name, the signal under test, the clock, and the reset signal, etc., all of 
them are given in the form of string (always includes hierarchy information as well), so both the C 
and SV sides need receive the correct data type (as shown in Table 1). And in the SV side 
implementation, we have to perform the data type conversion and the binding between string and 
logic, so that the SV side can implement correctly when there are multiple modeling instance passed 
in. These details are mainly implemented by the VCS system task $hdl_xmr and the SV data type 
associative array. During the functions implementation procedure, it was also blocked by the 
insufficiency of SV language that it could not support the dynamic sized vector selection, and 
therefore, we have to copy quite a lot code for the methods to satisfy the possible different signal 
vector size. 
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Table 1. DPI C layer mapping data types[4] 

SystemVerilog type C type 

byte char 

shortint short int 

int int 

longint long long 

real double 

shortreal float 

chandle void * 

string const char * 

bit unsigned char 

logic/reg unsigned char 

 
Figure 2 gives the defined coverage DPI-C APIs. Those APIs’ names imply they would be taken to 
define single data coverage point, data range coverage point, data transition coverage point or cross 
data coverage point. In general, the exported APIs would satisfy the most need on SoC level. At last, 
SoC level functional coverage would be merged with module level coverage as a whole for functional 
coverage measurement, so it requires users to put unique coverage names while calling the APIs. 
Users can define the rules in advance, for instance, it is suggested to put the verification objective 
name + sampled signal name + sampled value to make the covergroup name the one and only. 

extern void add_single_coverage(const char* sample_e, int 

sample_width, const char* obj, int obj_width, int binval, const char* 

name, int edge_mode = 2, int condition_val = -1); 

extern void add_range_coverage(const char* sample_e, int 

sample_width, const char* obj, int obj_width, int binval1, int 

binval2, const char* name, int edge_mode = 2, int condition_val=-1); 

extern void add_transition_coverage(const char* sample_e, int 

sample_width, const char* obj, int obj_width, int binval1, int 

binval2, const char* name, int edge_mode = 2 , int condition_val= -

1); 

extern void add_cross_coverage(const char* sample_e, int 

sample_width, const char* obj1, int obj1_width, int binval1, const 

char* obj2, int obj2_width, int binval2, const char* name, int 

edge_mode = 2, int condition_val = -1); 

Figure 2. Functional coverage definition DPI-C APIs 

3.1.2 SVA Coverage Utility 

The SVA coverage utility implementation is somewhat similar with the functional coverage utility. 
We also have to implement the corresponding function to complete binding the users input string 
information to the internal logic signal, and instantiate the corresponding assertion and coverage. 

We initially considered directly referencing the OVL[5] and Intel's built-in SVA checker libraries as 
these encapsulated SVA libraries are more friendly for users. But unfortunately, because the DPI-C 
interface requires SV task or function implementation, and the SVA concurrent assertion cannot be 
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called directly in the task or function, so we can only rewrite this part of the logic. The automatic task 
can perform the detection logic of most assertions[6], although this introduces us a lot of extra coding 
and testing effort.  

Figure 3 shows one example, to make it easier to understand the complex implementations are 
replaced with pseudo code (uppercase). The forever monitor can get same effect as assertion. In the 
check part, the if-else can be used to replace the SVA implication. Since we cannot call the native SVA 
statement, so the corresponding assertion coverage cannot be seen, but we can dynamically create 
the function covergroup in the rewritten task when the detection condition is satisfied, from final 
coverage database it can also be used to observe whether these assertions are actually executed in 
the test. 

task automatic ASSERT_NAME(string sva_name, string sig, int width, 

string clk, string rst, int clk_edge, int rst_polarity); 

  bit has_cov = 1;  //used for covergroup one time creation 

 

  BIND string sig, clk, rst TO INTERNAL LOGIC SIG, CLK, RST 

 

  fork  //fork join_none for multiple calling 

    forever @(POSEDGE OR NEGEDGE IS DEPEND ON INPUT clk_edge)) 

    begin 

      if(RST DEASSERT VALUE IS DEPEND ON INPUT rst_polarity) 

      begin  //enable check when reset released 

        if(width == 1)  //sig is single bit 

          SINGLE BIT SIG CHECK, PRINT ERROR WHEN VIOLATION 

        else  ////sig is vector 

        begin 

          for(int i=0; i<width; i++) 

            VECTOR SIG BIT CHECK, PRINT ERROR WHEN VIOLATION 

        end        //enable coverage when assert active 

        if(has_cov == 1) 

        begin 

          CREATE FUNCTION COVERGROUP NAMED sva_name 

          ENABLE COVERGROUP SAMPLE 

          has_cov = 0;  //for each instance only create one cov 

        end 

      end 

    end 

  join_none  //fork join_none for multiple calling 

endtask 
Figure 3. Task implemented SVA example with pseudo code 

Due to time insufficient, we didn't rewrite all the library assertions (more than 100). Instead, we just 
implemented some of the most common and most wanted assertions from users according to the 
project requirements. These will continue to improve according to the feedback from the later 
projects. 
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3.2 HVP 

3.2.1 HVP Basis 

HVP is a comprehensive model that allows user to hierarchically describe a verification plan[7]. As 
figure 4 shows one example, it contains feature declarations, attribute/annotation declarations, goals 
and metrics, etc. Attributes are named values specified in the plan, whereas metrics are named values 
annotated from HVP data files. Metrics can be coverage information extracted from merged 
simulation runs. We can use measure specifications to declare which metrics to annotate a feature 
from the verification database. 

#plan identifier 

plan PLAN_NAME; 

  #metric-declaration 

  metric enum {PASSED, UNKNOWN, FAILED} test_status; 

    aggregator = sum; 

    goal = ((test_status.FAILED + test_status.UNKNOWN)==0); 

  endmetric 

  #attribute and annotation declaration 

  attribute string prio = ""; 

  …… 

  annotation string hky_cg_name = ""; 

  …… 

  #feature declaration 

  feature Function; 

    #sub feature declaration 

    feature VO_NAME1; 

      owner = "user1"; 

      description = "……"; 

      #measure declaration 

      measure test_status; 

        source = "TESTCASE_PATH1/TESTCASE1"; 

      endmeasure 

      feature COV_NAME1; 

        hky_cg_name = "cov_name1"; 

        …… 

        measure Group grp; 

          source = "group instance: hky_pkg::cov_name1"; 

        endmeasure 

      endfeature 

      feature COV_NAME2; 

        …… 

      endfeature 

      …… 

    endfeature 

    …… 

  endfeature 

  #subplan declaration 

  subplan subplan1; 

endplan 
Figure 4. HVP basic syntax example 
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When HVP is loaded in Verdi/DVE coverate tool, it is shown as a static two dimentional table, the 
definitions of attributes, annotations and metrics can be seen as its columns, the plan and feature 
trees, which are the basic building blocks, can be seen as its rows. 

3.2.2 HVP Template 

As feature part is what user can edit through Verdi/DVE coverage GUI, so we defined such HVP 
template, the verification objectives are defined as its root feature, the function/SVA coverage and 
test cases status, etc. are its sub hierarchical feature or metrics measure. As the built-in metrics have 
included assertion and functional coverage, etc., we can use it directly without modification. And then 
following the Hawkeye DPI-C APIs interface parameters, we abstracted it and defined them as new 
attributes/annotations, from users’ point of view, they only need supplement these attributes value 
based on the functional coverage modeling intention. 

As figure 5 shows, when users need add one new functional coverage in the template, they just need 
add one new feature by click the ‘create a new feature’ button (shown in circle 1), then one new 
feature with default name ‘Feature_x’ will be added (shown in circle 2), users can ignore the default 
name because with the automation tool it will finally be annanoted by the value of attribute 
‘hky_cg_name’, user need update the Hawkeye related parameters value in the right side list, where 
all the Hawkeye needed parameters are shown. (shown in circle 3). 

 

Figure 5. HVP template update example 
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As HVP is finally shown as a static two dimentional table, we cannot dynamically switch its display 
like the excel pivot table, and the number of different Hawkeye interface function parameters are not 
exactly the same, which introduces some inconvenience to our application. We have to define the 
attributes according to the function with the most parameters. Users may only need a part of 
parameters when using some functions, the extra parameters display may introduce a bit trouble to 
the primary users. Although we have detail document to avoid such issues, it would be better to 
dynamically gray out those items not required, maybe Synopsys can consider adding similar features 
to future updates. 

3.2.3 Final Mapping Result Show 

Figure 6 shows the HVP mapping result example in Verdi coverage. After there added the 
function/SVA coverage information and related metrics measure in the HVP (shown in circles), we 
get a final version HVP. And after C tests with Hawkeye coverage definition run done, we get the 
coverage database with those Hawkeye defined covergroup inside, they can be mapped intuitively. 
We can see these coverage groups instantiated in the coverage list on the left, and the coverage can 
be quantified from the middle HVP mapping results. It can be seen that the mapping relations 
between verification objectives, test cases and coverages are clear. Based on these mapping relations, 
we even can enable only some of the specific coverage related with specific test case. This may be 
useful on SoC level, and it can be controlled in the coverage C test file by ‘ifdef’ easily. 

 

Figure 6. HVP map example in Verdi coverage 
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3.3 Toolkit Delivery 

3.3.1 Requirement 

From above introduction, we can see there are a lot of repetitive work actually in this flow, such as 
define the Hawkeye parameters in HVP, update the coverage feature name, add covergroup name in 
the HVP measure (Figure 5 to Figure 6), write the C test, etc. These repetitive works are boring and 
easy to mistake, so we developed the automation script to implement it. It can be automated because 
all these info use same value defined in Hawkeye parameters, which from users’ original input. These 
common information are the essencial of the automation. 

And in the work of integrating Hawkeye into different modules, there are also some repetitive work. 
It can be hiden for users who are not familiar with Hawkeye, So the automation tools also 
implemented some test bench Hawkeye insertion and makefile update functions, etc. 

So as shown in Figure 7, our final toolkit delivery includes the HVP template, the automation scripts, 
and the Hawkeye integration needed SV files and makefiles. 

 

Figure 7. Toolkit delivery 

3.3.2 Automation Script 

The automation tool is batch mode scripts developed by Python. As figure 7 shows, the input is the 
HVP file with Hawkeye parameters which added by user, the output are, 

 The final version HVP that updates the coverage feature name and metrics measure, etc., 
which can be used for final mapping directly. 

 The C test files with Hawkeye function calling, these C test files can be compiled and run 
through the DPI-C interface during simulation, whether it’s direct or SV/UVM testbench. 

 The calling of native SVA (OVL and Intel's built-in SVA checker libraries), which we added 
later. It’s more considering the demand from module level verifiers and design engineers, so 
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they can either embed the native SVA statements into RTL or bind with their test bench easily, 
and can correspong to the verification objectives. 

Therefore SoC level verifiers can focus on the verification objectives and coverage modeling and of 
course the test case development (which shown in figure1 step 1 with green color), all other rest 
works (which shown in figure1 step 2-4 with blue color) can be automated. The script also have the 
necessary features such as HVP check to ensure that the entire closed-loop operation can be carried 
out correctly. 

3.3.3 Makefile and Others 

Other deliveries include the Hawkeye complete SV packages and the Makefile which used to integrate 
it. Users can integrate Hawkeye into their own test bench by merge the Makefile content to their 
compilation environment. Since we have considered various common issues for users, the 
integration is actually very easy. 

4. Summary 

In this paper we introduced a SoC level verification quantitative closed-loop management flow, let us 
correspond the solution with the problems in the background section, 

 We developed Hawkeye to implement SoC level functional and SVA coverage modeling 
through DPI-C, it doesn’t need modify the test bench, just need a little compilation time that 
is almost negligible. 

 We defined HVP template and format, which unified the SoC level verification quality 
evaluation criteria. With verification objectives verification managers can focus on the literal 
checking of functional coverage modeling and final mapping result, both the load and 
efficiency of review work are improved. 

 We delivered toolkit with automated sript, which increased the verifiers’ efficiency and 
reduced the errors possibility. Verifiers can focus on the coverage modeling literal 
information and test case construction without worry about lots of low level redundant 
coding. Obviously, this is also beneficial to the improvement of the entire project efficiency. 

Of course, because we limit the coverage modeling only through Hawkeye inteface, we somewhat lost 
flexibility of functional coverage contrast to module level. And it also brings a little extra learning cost 
to the verifiers, but compare with our benefit, it is worthy. 

The scheme in this pater has been proven to be usable, and will be used in the following big 
project.Before the SNUG conference in June, we may supplement more practical applications into the 
solution and summary if there are. 
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